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Power Quality

• Power quality determines the fitness of electrical 
power to consumer devices.

• Synchronization of the voltage frequency and phase 
allows electrical systems to function in their intended 
manner without significant loss of performance or life.

• The term is used to describe electric power that drives 
an electrical load and the load's ability to function 
properly. 

• Without the proper power, an electrical device (or 
load) may malfunction, fail prematurely or not operate 
at all.

• There are many ways in which electric power can be of 
poor quality and many more causes of such poor 
quality power.
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Power Quality
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What is a power quality problem?

• A Power Quality Problem is:

Any occurrence manifested in voltage,
current or frequency which results in
failure or mis-operation of end-use
equipment



Importance of Power Quality

• Load Equipment Sensitivity (microprocessor-
based)

• Process Automation

• Networks

• Power Electronics
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PQ is a Business Problem
•Power Quality issues cause business problems 

such as:

– Lost productivity, idle people and equipment

– Lost orders, good will, customers and profits

– Lost transactions and orders not being 

processed

– Revenue and accounting problems 

– Customer and/or management dissatisfaction

– Overtime required to make up for lost work time

According to Electric Light and Power Magazine, 30 to 40 Percent of All 
Business Downtime Is Related to Power Quality Problems.
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Frequency

Voltage Variations

Voltage Flicker

Voltage Dip

Power Quality Parameters
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Interruptions

Temporary Overvoltage

Transients

Power Quality Parameters
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Unbalance

Harmonics

Interharmonics

Power Quality Parameters
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PQ Definitions
IEEE Categories

Std 1159-1995

Short Duration 

Variations

Typical 

Duration

Instantaneous Sag 0.5 – 30 cycles

Momentary Sag 30 cycles – 3 

sec

Temporary Sag 3 sec – 1 min
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PQ Definitions
IEEE Categories

Std 1159-1995

Short Duration 

Variations

Typical 

Duration

Instantaneous Sag 0.5 – 30 cycles

Momentary Sag 30 cycles – 3 

sec.

Temporary Sag 3 sec – 1 min.

Instantaneous Swell 0.5 – 30 cycles

Momentary Swell 30 cycles – 3 

sec.

Temporary Swell 3 sec – 1 min.
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PQ Definitions
IEEE Categories

Std 1159-1995

Short Duration 

Variations

Typical 

Duration

Instantaneous Sag 0.5 – 30 cycles

Momentary Sag 30 cycles – 3 

sec.

Temporary Sag 3 sec – 1 min.

Instantaneous Swell 0.5 – 30 cycles

Momentary Swell 30 cycles – 3 

sec.

Temporary Swell 3 sec – 1 min.

Momentary Interruptions 0.5 – 30 cycles

Temporary Interruptions 30 cycles – 3 

sec.
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PQ Definitions
IEEE Categories

Std 1159-1995

Long  Duration 

Variations

Typical 

Duration

Sustained interruptions > 1 min

Under voltages > 1 min

Over voltages > 1 min
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PQ Definitions
IEEE Categories

Std 1159-1995

Long  Duration 

Variations

Typical 

Duration

Sustained interruptions > 1 min

Under voltages > 1 min

Over voltages > 1 min

Voltage imbalance Steady state

Waveform Distortion
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PQ Definitions
IEEE Categories

Std 1159-1995

Long  Duration 

Variations

Typical 

Duration

Sustained interruptions > 1 min

Under voltages > 1 min

Over voltages > 1 min

Voltage imbalance Steady state

Waveform Distortion

DC offset Steady state

Harmonics Steady state

Inter harmonics Steady state

For Electric Utilities Control of Voltage and Prevention of Outages is Power Quality
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IEEE1159-EN50160 Levels
IEEE 1159 EN50160

No. Categories Typical Spectral 
Content

Typical Duration Typical Voltage 
Magnitude

Short Duration Variations

Instantaneous

7 Sag 0.5-30 Cycles 0.1-0.9 pu <1 sec

8 Swell 0.5-30 Cycles 1.1-1.8 pu No

Momentary

9 Interruption 0.5 Cycles-3s <0.1 pu <1 sec

10 Sag 30 Cycles-3s 0.1-0.9 pu No

11 Swell 30 Cycles-3s 1.1-1.4 pu No

Temporary

12 Interruption 3 s-1 min <0.1 pu No

13 Sag 3 s-1 min 0.1-0.9 pu No

14 Swell 3 s-1 min 1.1-1.2 pu No

Long Duration Variations

15 Interruption, Sustained >1 min 0.0 pu Yes

16 Undervoltages >1 min 0.8-0.9 pu Yes 10 min

17 Overvoltages >1 min 1.1-1.2 pu Yes 10 min
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Sources of PQ Problems
•Utility Sources

– Lightning

– PF Correction 
Equipment

– Faults

– Switching

Internal Sources

• Individual Loads –Lighting, Elevators, Coolers, HVAC

• Uninterruptible Power Supplies 

• Variable Frequency Drives 

• Battery Chargers 

• Large Motors During Startup 

• Electronic Dimming Systems 

• Lighting Ballasts (esp. Electronic) 

• Arc Welders, and Other Arc Devices 

• Medical Equipment, e.g. MRIs and X-Ray Machines 

• Office Equipment and Computers

• Wiring
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Major PQ Problems

Source: EPRI, 1994

Spikes, 7%

Sags, 56%

Outages, 

6%

Swells, 

31%

Sags (Dips)

Associated with system faults

Switching of heavy loads

Starting of large motors

Swells

System fault conditions

Switching on a large capacitor bank

Switching off a large load
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Should we Care about Power Quality?

Comprehensive Research in Europe in 1400 sites at 8 countries reports that 
20% experience the following:

• Computer lockouts (20%)

• Light flickering (22%)

• Electronic card failures (18%)

• Power Factor correction system failures (17%)

• Failures in high load switching (16%)

• Neutral conductor overheating (12%)

• Unexpected breaker operation (11%)

• Power meters inaccurate readings (6%)

And of course excess losses and downtime
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Causes and Solutions
PQ Problem Major Sources Solutions

Frequency The Utility

Voltage variations Load changing
Sync. loads, 
Fast PF correction

Voltage flicker
Load changing, mainly 
welding

Fast PF correction

Voltage dip
Motor and other load 
startups

Motor starters, VFD, 
Fast PF correction

Interruptions The Utility

Overvoltage Over PF compensation Fast PF correction

Transients Connections, Switching Controlled switches

Unbalance
Unbalanced loads, 
transformer phase shift

Balance the loads

Harmonics Non linear loads, resonance
Active/passive filtration, 
detuned capacitors,
Improved VFD operation
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Power And Harmonics in 
Nonsinusoidal Systems

• Average power
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Example 1

Ans: Pav = 0.32
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Root-mean-square (RMS) value of a
waveform, in terms of Fourier series

• Similar expression for current

• Harmonics always increase rms value

• Harmonics do not necessarily increase average 
power

• Increased rms values mean increased losses
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Power factor

• Power factor is a figure of merit that measures 
how efficiently energy is transmitted.
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Power Factor     Cotd…
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THD-Total Harmonic Distortion

IN, VN – Individual Harmonics of order N
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Distortion factor vs. THD
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Problem 1

Signal Fund. 
Voltage

Harmonic Voltages (V)

5 7 11 13 17 19 23 25

1 444.9 70.9 50.0 39.1 25.0 20.0 10.0 2.1 10.1

2 440.9 71.0 12.9 6.2 5.2 0.9 1.5 57.2 36.9

3 440.9 12.3 12.8 5.9 5.1 10.1 8.3 20.0 55.7

4 439.7 13.0 8.5 5.7 5.1 0.8 1.7 17.8 49.7
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Power Quality Indices
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Example 2

Find Vrms, Irms, Pav, S, TPF, DF,VTHD, ITHD

Ans: 1.021, 1.031, 1,052, 0.848, 0.866 (lag)m 
20.62%, 25%
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Standards for Harmonics Limitation
IEEE/IEC

• IEEE 519-1992 Standard:  Recommended Practices and 
Requirements for Harmonic Control in Electrical Power 
Systems (Current Distortion Limits for 120v-69kv DS)

Table 1: Current Harmonic Limits [4]

Ratio

Iscc / Iload

Harmonic odd

numbers (<11)

Harmonic odd

numbers (>35)

THD-i

< 20 4.0 % 0.3 % 5.0 %

20 - 50 7.0 % 0.5 % 8.0 %

50 - 100 10.0 % 0.7 % 12.0 %

>100 15.0 % 1.4 % 20.0 %
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Standard of Harmonics Limitation

• IEEE 519-1992 Standard: Recommended Practices and 
Requirements for Harmonic Control in Electrical Power 
Systems (Voltage Distortion Limits)

Table 2: Voltage Harmonic Limits [4]

Bus Voltage Voltage Harmonic limit 

as (%) of Fundamental

THD-v (%)

<= 69kV  3.0 5.0

69 – 161kV 1.5 2.5

>= 161 kV  1.0 1.5



SMPS
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SMPS
• Electrical energy is use to drive the computer 

system. This is in the form of a SMPS or source is 
SMPS.

• The basic function of the power supply is to 
convert the type of electrical power available at 
the wall socket to the type the computer circuitry 
can use. 

• The power supply in a conventional desktop 
system is designed to convert either 120-volt 
(nominal) 60Hz AC (alternating current) or 240V 
(nominal) 50Hz AC power into +3.3V, +5V, and 
+12V DC (direct current) power. 
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SMPS

• Power supplies, often referred to as "switching 
power supplies", use switcher technology to 
convert the AC input to lower DC voltages. The 
typical voltages supplied are: 

• 3.3 volts - used by digital circuits

• 5 volts - used by digital circuits

• 12 volts - run motors in disk drives and fans.
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Some Power Consumption Values 
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SMPS – Circuit Diagram
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SMPS

• Step Down Transformer: Step down transformers are 
designed to reduce electrical voltage. Their primary voltage is 
greater than their secondary voltage. This kind of transformer 
"steps down" the voltage applied to it. Step down 
transformers convert electrical voltage from one level to a 
lower level.

• Rectifier: A rectifier is an electrical device that converts 
alternating current (AC) to direct current (DC), also known as 
rectification.

• Filter: To further reduce the ripple in DC Voltage, filter is used.

• Regulator Circuit: A voltage regulator is an electrical regulator 
designed to automatically maintain a constant voltage level.
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Rectifier Load
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Rectifier without Filter
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Rectifier with Filter
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Waveform
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THD Analysis of Input Current
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Three Phase Power Converters
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A Simple Diode Circuit with a Pure Resistive Load

• The load voltage vd and the current i have an average component
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Bottom group

Diode-Rectifier Bridge Analysis

• It is very unlikely that a purely resistive load will be supplied

• Constant dc current is equivalent to a large inductor in series at the dc output

• Current flows continuously through one diode of the top group and one diode 

of the bottom group.

Top group
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Redrawing Diode-Rectifier Bridge

• Current flows continuously through one diode of the top group and one diode of 

the bottom group.

• In the top group, cathodes of the two diodes are at the same potential. Therefore, 

the diode with its anode at the highest potential will conduct id

• When vs goes negative, id instantaneously commutes to D3 as D1 is reversed biased.

• Similar argument could be applied to the bottom group.

Top group

Bottom group
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Items that are worth noting:

• Waveforms with a purely resistive load and 

a purely dc current at the output

• When vs is positive, D1 and D2 conduct

vd=vs and id=is

When vs is negative, D3 and D4 conduct

vd= -vs and id= -is

• In both cases, the dc-side voltage and 

current waveforms are the same

• The average value of the dc output voltage
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Three-Phase, Full-Bridge Rectifier

• In industrial applications, where three-phase power is available, it is 

preferable to use three-phase rectifier circuits because of …

– Higher power handling capability

– Lower ripple content in the waveforms
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Three-Phase, Full-Bridge Rectifier: Redrawn

• Current flows through one diode from the top group and one from the bottom

• Diode with highest anode potential from the top and diode with lowest cathode 

potential from the bottom will conduct
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Three-Phase, Full-Bridge Rectifier Waveforms

• Six-pulse rectifier:               

Vd (=VPn-VNn) waveform 

consists of six segments per 

cycle

• Each diode conducts for 120o

• Conduct sequence: 1-2-3….

• Average dc output voltage,
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Three-phase diode rectifier.

The diode rectifier shown in the figure below, supplies a DC machine, which has a 

constant load torque T = 100 Nm. The flux is held constant and Ka· = 1. This gives an 

armature current Ia = 100 A. The armature inductance of the machine, La, is so large 

that the armature current may be considered to be constant. The line voltage of the grid, 

VLL, is equal to 230V.  Assume ideal grid, Ls=0.

(a) Sketch the armature voltage vd(t) and the line currents ir(t).

(b) Calculate the average dc voltage, Vd.

(c) Calculate the rms current in phase r, Ir,rms.

(d) List the advantages for a three-phase rectifier compared to a single-phase   rectifier?

Kumaravel/EED/NIT/102 March 2016



Solution: Example
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Thyristor Converters

• In some applications (battery charger, some ac/dc drives), 
the dc voltage has to be controllable

• Thyristor converters provide controlled conversion of ac 
into dc

• Primarily used in three-phase, high power application

• Being replaced by better controllable switches
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Thyristor in a Simple Circuit (Review Class)

• For successful turn-off, reverse voltage required
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Thyristor Converters

• Average dc voltage Vd can be controlled from a positive maximum to a 

negative minimum on a continuous basis

• The converter dc current Id can not change direction

• Two-quadrant operation

• Rectification mode (power flow is from the ac to the dc side): +Vd & +Id

• Inverter mode (power flow is from the dc to the ac side): -Vd & +Id

• Inverter mode of operation on a sustained basis is only possible if a source of 

power, such as batteries, is present on the dc side.
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• Basic thyristor circuits: Line-frequency voltage source connected to a load 

resistance

• In the positive half cycle of vs, the current is zero until t=a, at which a 

gate pulse of a short duration is applied

• With the thyristor conducting, vd = vs

• vd becomes zero at t = 

• By adjusting the firing angle a, the average dc voltage Vd and current Id

can be controlled
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Thyristor Gate Triggering

• Generation of the firing signal

• The sawtooth waveform 

(synchronized to the ac input) is 

compared with the control signal 

vcontrol, and the delay angle a with 

respect to the positive zero crossing 

of the ac line voltage is obtained in 

terms of vcontrol and the peak of the 

sawtooth waveform Vst.
















st

controloo

V

v
180a
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Full-Bridge (Single- and Three-Phase) Thyristor Converters
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Single-Phase Thyristor Converters

• One thyristor of the top group and one of the bottom group will conduct

• If a continuous gate pulse is applied then this circuit will act like a full 

bridge diode rectifier and the web forms are as shown below

• a=0 for 1 and 2 and a= for thyristors 3 and 4
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1-Phase Thyristor Converter Waveforms

• Assumptions: Ls=0 and purely dc current 

Id

• a: delay angle or firing angle

• Prior to t=0, current is flowing through 3 

and 4, and vd = -vs

• Beyond t=0, thyristors 1 and 2 become 

forward biased, but cannot conduct until 

a.

• vd becomes negative between 0 and a as a 

consequence of the delay angle

• At t=a, gate pulse applied and current 

commutation from thyristors 3 and 4 to 1 

and 2 is instantaneous (Ls = 0), and vd = vs

• Thyristors 1 and 2 will keep conducting 

until 3 and 4 are fired
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The expression for the average voltage Vd:

Average dc Voltage as a Function of the Delay Angle

  a


a

a

a cos9.0sin2
1

ssd VtdtVV  


Let Vd0 be the average dc voltage with a=0,

  ssd VtdtVV 9.0sin2
1

0

0   




Then, drop in average voltage due to a,

 aaa cos19.00  sddd VVVV
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Average dc Output Voltage

The variation of Vd as a function of a:

Average dc voltage is positive until a=90o: this region is called 

the rectifier mode of operation

Average dc voltage becomes negative beyond a=90o: this 

region is called the inverter mode of operation

a
aa cos

9.0

cos9.0

0


s

s

d

d

V

V

V

V

Kumaravel/EED/NIT/102 March 2016



Thyristor Converters: Inverter Mode (Vd is negative)

• Average value of vd is negative for 

90o<a<180o. Average power Pd is 

negative (Pd=VdId) and thus power 

flows from the dc to the ac side

• On the ac side, Pac=VsIs1cos1 is 

also negative because 1>90o

• Inverter mode of operation is 

possible because there is a source 

of energy on the dc side

• ac side voltage source provides 

commutation of current from one 

pair of thyristors to the others
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3-Phase Thyristor Converters

• Current Id flows through the one thyristor of the top group and one of the 

bottom group

• If a continuous gate pulse is applied then this circuit will act like a three-

phase full bridge diode rectifier and, as a result,

LLd VV 35.10 
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3-Phase Thyristor Converter Waveforms
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Average Output DC Voltage
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dc-side voltage waveforms 

as a function of a

Vd repeats at six times the 

line frequency
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Single-Phase Full-Wave-Converter Drives

• The converter in the field circuit could be a full, or even a dual converter. 

• The reversal of the armature or field allows operation in the second and 

third quadrants. 

• The current waveforms for a highly inductive load are shown in Figure 

15.13c for powering action. 
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Three-Phase Drives

• The armature circuit is connected to the output of a three-phase 

controlled rectifier. 

• Three-phase drives are used for high-power applications up to 

megawatt power levels. 

• The ripple frequency of the armature voltage is higher than that of 

single-phase drives and it requires less inductance in the armature 

circuit to reduce the armature ripple current. 

• The armature current is mostly continuous, and therefore the motor 

performance is better compared with that of single-phase drives. 
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Three-Phase Inverter

• Used to supply three-phase loads

• Three single-phase inverters could be used, however, 12 switches are 

necessary, as a result, less efficient

• Consists of three legs, one for each phase

• One of the two switches in a leg is always ON at any instant

• Output of each leg depends on Vd and the switching status
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Three-Phase Full-Wave-Converter Drives

• A three-phase full-wave-converter drive is a two-quadrant drive without 

any field reversal, and is limited to applications up to 1500 kW. 

• During regeneration for reversing the direction of power 

• However, the back emf of the motor is reversed by reversing the field 

excitation. 

• The converter in the field circuit should be a single- or three-phase full 

converter. 
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Arc Furnace
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Current drawn by a 100W incandescent lamp
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Current drawn by a HF- Fluorescent 
Light
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Current drawn by a HF- Fluorescent 
Light
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81

75% of all light is generated by 
fluorescent lamps

•These use 50% of the share of  electricity used in 
lighting

•(whereas lighting in total uses 11% of all 
electricity generation)
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Starte
r

Lamp

Ballast

Light switch

Glow cathode Glow cathode
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Glow discharge
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pre-heating
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Ignition  operation
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...and the less well known
electronic starters
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Electronic
starte

r

Lamp

Ballast

Light switch

Glow cathode Glow cathode
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Are they EMC compliant?

•The high inductance of a 
magnetic ballast suppresses 
current harmonics in theory...

...and in practice
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What effects do CFLs and what effects
did older electronic ballasts have on the mains?

All CFLs, electronic ballasts 

up to 25 W and older 

electronic ballasts work like 

this
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Outline
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Eclipse 20W CFL

Eclipse CFL Schematic
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What is possible for a CFL
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CFL for North American Market
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What is possible for a CFL
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How effective is power factor 
correction (to EN 61000-3-2)?
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What is a Drive?
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A variable frequency drive converts incoming 60 Hz utility

power into DC, then converts to a simulated variable voltage,

variable frequency output

VFD Fundamentals

60 Hz Power

Electrical Energy

ABB

Zero - 120 Hz

To 

Motor

VFD

RECTIFIER

(AC - DC)

INVERTER

(DC - AC)

AC DC AC

VFD
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Pulses To Negative Pulses Determines
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Frequency = 30Hz

Frequency = 60Hz
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By

Dr. Kumaravel S.

kumaravel_s@nitc.ac.in

You gain strength, courage and confidence by every experience in which you really stop 

to look fear in the face. You must do the thing you think you can not - Eleanor Roosevelt
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