Grid Integration of Solar PV System

Department of EED, National Institute of Technology Calicut, Kerala - 673101

Presented by

Dr. KUMARAVEL SUNDARAMOORTHY Department of Electrical Engineering University College Dublin

Contents

- Modeling of Solar PV
- Fuzzy Controlled Buck Converter
- Real and Reactive power control of solar PV Inverter
- Power quality issues in Solar PV

Power Converter for Renewable Energy

Converters for Renewable Energy

Grid Integration of Solar – PV System

Integration of Solar-PV with Grid

Solar Energy

sun fusion

/ 2015

Einstein's Invention

- solar energy directly into electricity by Einstein himself in 1905. In 1921, he won the Nobel Prize for this original proposal.
- The theory proposed that if sunlight is shine on the metal with a specific frequency corresponding to that metal, current is produced. Since current is the flow of electron, electricity is produced.
- In 1954, the first photovoltaic technology is developed the silicon photovoltaic cell at Bell Labs.

Electron Generation

A photon (yellow) excites an electron (blue) to a higher energy and is pulled away by some mechanism of charge separation.

Mathematical Model of Solar-PV

Mathematical Model of Solar-PV

$$I = I_L - I_0 \left(e^{\frac{q(V + IR_s)}{nkT}} - 1 \right) \dots (1) \qquad V_{oc} = \left(\frac{nkT}{q} \right) \ln \left[\frac{I_L}{I_o} \right] \dots (7)$$

Simulated I-V and P-V Characteristics of Solar-PV Module

For Different Solar Radiation

Atmospheric temperature 25°C

Peak Power Point Tracking

PV Array

$V_{out} = d V_{in}$	V _{out} –Output DC Voltage in Volt
	V _{in} – Input DC voltage in Volt
	d - duty ratio

PWM Pulses for Controlling Duty Ratio 'd'

Buck Converter Specifications

Parameter	Ratings
Input voltage	100 V
Output voltage	0-100 V
Output power	1kW
Inductor	33mH
Capacitor	500 μF
Switching Frequency	10 kHz

PID Controller

Tuning of PID for Buck Converter

Output Response of PID controller for Buck Converter

Variation of the Control Signal by PID

Intelligent to Artificial Intelligent

Different AI Techniques

- Fuzzy logic
- Artificial neural network
- Genetic algorithm
- Practical swarm optimization
- Simulated annealing
- Ant colony algorithm
- Artificial immune system algorithm

Fuzzy Inference Engine

Output voltage of Buck converter for PID and Fuzzy controller

Kumaravel/EED/NITC/16 May 2015

Response of Fuzzy Controller

Response of Fuzzy Controller

Output voltage of Buck converter for PID and Fuzzy controller

Inverter Control

Output Voltage and Current of the DC/DC Converter

Source Voltage and Source Current

Kumaravel/EED/NITC/16 May 2015

Source Voltage and Source Current

Real and Reactive Power Control of Inverter

Kumaravel/EED/NITC/16 May 2015

What are Harmonics?

 Harmonics are currents or voltages with frequencies that are integer multiples of the fundamental power frequency being 50 or 60Hz

Effects of Harmonics

- <u>Distorted voltage</u>
- Overheated transformers and motors
 - Increases hysteresis losses in steel and iron cores
- Heating of neutral conductors
 - Skin effect increased amount of current flowing on the outside conductors
- High neutral current
- EMI problems
- Measurement problems

Dr. Kumaravel Sundaramoorthy

Kumaravel_s@nitc.ac.in

Kumaravel/EED/NITC/16 May 2015

IN THE REAL

By