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Unit Vectors

What is unit vector ?

 Two unity magnitude fundamental
sinusoidal quantities, which are displaced
by 900 from each other

 One of the unit vector is in phase with grid
voltage

 This should be free from harmonics

 Phase angle error from grid voltage should be minimum

Significance of unit vector ?

 STATCOM is an independent voltage source

 Unit vector helps to synchronize STATCOM voltage and Grid
voltage

 Also unit vector is used to extract the active and reactive power
component separately

 It is also used to separate the individual harmonics in case of
active power filters 3 of 63



Transformations

 3 to - transformations

- to D-Q transformations
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SESSION 1

UNIT VECTORS FOR THREE PHASE 
BALANCED/UNBALANCED GRID
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Unit vector for Balanced/Unbalanced 

Grid condition

 Let the grid voltages are,

 Objective,
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Unit vector for Balanced/Unbalanced 

Grid condition

 If U1 and U2 are known then V and V can be transformed to 

D-Q axis

 Assume U1 and U2 are known, then

 When U1 gets synchronized with VR, then g=g
’ and,
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 Let U1 is not synchronized to VR and its frequency is g
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Unit vector for Balanced/Unbalanced 

Grid condition

 If Vq = 0 is ensured, then U1 will be synchronized to VR

 To ensure Vq = 0, feedback with simple PI-controller can be 

used

 PI-controller will be sufficient,

 Since Vd and Vq are d.c. quantities and variation in e(t) with 

time is minimal
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Unit vector for Balanced/Unbalanced 

Grid condition

 What should be the output parameter of PI-controller ?

 PI-controller performs well when the selected output parameter magnitude 

swing is minimal

 Our objective is to obtain U1 and U2, but they are sinusoidally varying 

quantities and results in large swing in magnitude

 The angle of U1 and U2 are also will be varying with time in large extend

 Instead the frequency of U1 and U2 can be thought of selecting as output 

parameter of PI-controller
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Unit vector for Balanced/Unbalanced 

Grid condition

 What should be the output parameter of PI-controller ?

 If the grid frequency variation is minimal, then

 PI-controller performance can be further improved by selecting the output 

of PI-controller as ∆ (variation in grid frequency) instead of absolute grid 

frequency, 
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Unit vector for Balanced/Unbalanced 

Grid condition

 Design of PI-controller constants ?

 At time t=0, let grid and unit vectors (U1 and U2) frequency be g

 At time t=0+, grid frequency changed from      to        and unit vector 

frequency remains at g

 3 to - transformation of grid voltage is,

g
g
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Unit vector for Balanced/Unbalanced 

Grid condition

 Design of PI-controller constants ?

 Assuming grid frequency variation is minimal, then

tt gggg )())sin((  

 Hence Vq is,
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Unit vector for Balanced/Unbalanced 

Grid condition

 Design of PI-controller constants ?

 Assuming grid frequency variation is minimal, then
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 Hence Vq is,
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Unit vector for Balanced/Unbalanced 

Grid condition

 Design of PI-controller constants ?

 Assuming grid frequency variation is minimal, then
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 Hence Vq is,
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Unit vector for Balanced/Unbalanced 

Grid condition

 Design of PI-controller constants ?

 The block diagram can be further reduced by removing the quantities not 

taking part in transients

 ref is constant and no effect on transients

 Once grid voltage is changed from       to     , 

can be assumed to be constant

 Simplified block diagram is,
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Unit vector for Balanced/Unbalanced 

Grid condition

 Design of PI-controller constants ?

 Open loop transfer function of the system is given by,
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Unit vector for Balanced/Unbalanced 

Grid condition

 Design of PI-controller constants ?

 Find asymptotic bode plot of the system,

 For zero:

Corner frequency, 

Magnitude plot: +20dB/decade

 Phase plot: +450/decade

 For poles:

Corner frequency, 

Magnitude plot: -40dB/decade

 Phase plot: -1800
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pi kk

ik

Unit vector for Balanced/Unbalanced 

Grid condition

 Design of PI-controller constants ?

 Closed loop system will be stable,

 If the open loop gain crosses 0dB (unity 

gain) with -20dB/decade and ensuring 

atleast -1350 Phase margin

 If z > p, leads to a phase 

close to -1800 makes system 

prone to unstable

 Hence to make system more 

stable, keep z <= p

 Since phase plot of zero has a 

slope of +450/decade, for z = 

p, the phase is -1350 leads to 

phase margin of 450
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ik

Unit vector for Balanced/Unbalanced 

Grid condition

 Design of PI-controller constants ?

 z = p implies,

 One more component present 

in the open loop transfer 

function is,
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away increasing the bandwidth 

of the system
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ik

-40dB/dec

20dB/dec

20dB/dec

Gain = 0dB

g

-1350

Unit vector for Balanced/Unbalanced 

Grid condition

 Find system bandwidth ?

 Defined as the frequency at 

which the closed-loop 

magnitude is equal to -3 dB

 For phase of -1200, the open 

loop bandwidth and closed loop 

bandwidth are found to be 

closer

 Since gain at       is 0dB, the 

gain cross over frequency of 

open loop system is,
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Unit vector for Balanced/Unbalanced 

Grid condition

 Find system bandwidth ?

 The modified crossover 

frequency considering 3/2Vg is,

 Gain at                     is,

 Gain at new crossover 

frequency (    ) is 0dB

 Slope during this time is            

-20dB/decade
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ik
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g
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Unit vector for Balanced/Unbalanced 

Grid condition

 Find system bandwidth ?

 The modified crossover 

frequency considering 3/2Vg is,

 Closed loop bandwidth (appx.) 

is,

 Once the bandwidth is fixed 

proportional constant (kp) can 

be found
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Unit vector for Balanced/Unbalanced 

Grid condition

 How to fix the bandwidth ?

 Bandwidth is decided by the harmonics present in Vd and Vq components 

as well as the response time requirement in transient conditions

 For a balanced three wire system the minimum harmonics expected on 

Vd and Vq are 300Hz (transformation of 5th and 7th harmonics)

Here bandwidth of 30Hz to 60Hz will be sufficient for proper 

attenuation of harmonics in grid voltages

g

p
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 In Summary:

 Based on the application and transient requirement fix the bandwidth

 If grid voltage peak is known, proportional constant (kp) can be found

 Once kp is known integral constant ki can be computed
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Unit vector for Balanced/Unbalanced 

Grid condition

 Unit vector under unbalanced grid condition ?

 Under unbalanced grid conditions, the grid voltage contains fundamental 

positive sequence as well as fundamental negative sequence components

 Let us construct the unit vector such that it is synchronized with 

fundamental positive sequence component

 As earlier fundamental positive sequence present in the grid voltage when 

transformed to D-Q reference frame reflected as d.c. component and 

fundamental negative sequence present in the grid voltage reflected as 

100Hz component

 Since we required only d.c. component in Vq, 100Hz component can be 

easily removed by using simple low pass filter of corner frequency around 

10Hz
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Unit vector for Balanced/Unbalanced 

Grid condition

 Unit vector under unbalanced grid condition ?

 C is the corner frequency of low pass filter

 Low pass filter will not affect the information of fundamental positive 

sequence, as it is a d.c. quantity
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Unit vector for Balanced/Unbalanced 

Grid condition

 Test results

 Transient performance analysis carried out by simulation using PSIM 

simulation package
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Unit vector for Balanced/Unbalanced 

Grid condition

 Test results

 Transient performance analysis carried out by simulation using PSIM 

simulation package
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Unit vector for Balanced/Unbalanced 

Grid condition

 Test results

 Unit vector implemented for unbalanced grid condition in TI’s DSP 

TMS320F2812

VR and VB are nominal, VY=0

Grid voltagesUnit vector
Grid voltage

Unit vector

Balanced grid voltage

Unit vector t

Unit vector and angle t 28 of 63



A Simple method for

Unit vector in Balanced Grid condition

 A simple method exists based on trigonometry to compute 

unit vector for balanced grid condition

 Transform three phase grid voltage to - co-ordinate
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A Simple method for

Unit vector in Balanced Grid condition

 Output of LPF in time domain is,

 and are always 900 displaced
irrespective of grid frequency and corner
frequency of LPF

 At the zero crossing of , will be
in peak and vice versa

 Unit magnitude of and can be
obtained by dividing the term by its own
magnitude,
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A Simple method for

Unit vector in Balanced Grid condition

 Block diagram of unit vector construction
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A Simple method for

Unit vector in Balanced Grid condition

 Let us perform the following operations,

 Phase angle () is minimum when c=250

 For c=250,  is zero when grid frequency is 50Hz

 













t

V

tVtVtF

g

gc

cg

sin
2

3

          

)()()(

22

1

 













t

V

tVtVtF

g

gc

cg

cos
2

3

          

)()()(

22

2

gc

gc









tanwhere, 

32 of 63



A Simple method for

Unit vector in Balanced Grid condition

 Complete block diagram of unit vector construction

where, c=250
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A Simple method for

Unit vector in Balanced Grid condition

 Test results

Grid voltage

Unit vector
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SESSION 2

UNIT VECTORS FOR SINGLE 
PHASE GRID
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Overview of the presentation

Constructing two unit magnitude 900 displaced components

Mitigating the effect of grid frequency variation

Approximation method

Rigorous method
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Overview of the presentation

Constructing two unit magnitude 900 displaced components

Mitigating the effect of grid frequency variation

Approximation method

 Rigorous method
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Let R-phase grid voltage be, VR = Vg sin(St)

Let the above voltage is passed through a LPF of corner
frequency, c

Using Laplace analysis

Innovative method for constructing
unit vector

VR FR
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The steady state output, FR(t) is given by

Transient term of FR(t) is given by,
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constructing unit vector (contd.)

Let the FR(t) is again pass through a
LPF of same corner frequency, c

Using Laplace analysis
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constructing unit vector (contd.)

Subtract FR’(t) from FR(t), let the
result be FR’’(t)

The steady state output, FR’’(t) is given by

and

Transient term of FR’’(t) is given by,
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constructing unit vector (contd.)

Comparing steady state term of FR’(t) and FR’’(t)

FR’(t) and FR’’(t) are always 900

displaced irrespective of grid
frequency and corner frequency of
LPF

At the zero crossing of FR’’(t), FR’(t)
will be in peak and vice versa

Unit magnitude of FR’(t) and FR’’(t)
can be obtained by dividing the term
by its own magnitude
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constructing unit vector (contd.)

ZCD

ZCD

S&H

S&H

ABS

Trigger

F1= -cos(St+)

F2 =sin(St+)

X / Y
X

Y

X

Y

VR
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 Inference from the above result

F2(t) is phase shifted from grid voltage
by an angle 

VR = Vg sin(St)
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constructing unit vector (contd.)

 Inference from the above result (contd.)

 If corner frequency of LPF (c) is set

equal to grid frequency (s), i.e. c = s :

phase shift  = 0

F2(t) is in phase with grid voltage

and F1(t) is lagging the grid voltage by 900

VR = Vg sin(St)

Fix the corner frequency of LPF (c) is equal to s = 250
rad/sec, where grid frequency fs = 50Hz

Let Grid frequency varies a maximum of 10% (45Hz to
55Hz)

Phase shift,  = 60 for -10% of grid frequency variation

Loose the proper synchronization

F1(t) = -cos(St+)

F2(t) = sin(St+)
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constructing unit vector (contd.)

Phase error with variation in grid frequency

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

% ge of grid frequency variation

p
h

as
e 

er
ro

r

1ph without comp

 6.0

44 of 63



Overview of the presentation

Constructing two unit magnitude 900 displaced components

Mitigating the effect of grid frequency variation

Approximation method

Rigorous method
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constructing unit vector (contd.)

Mitigating the effect of grid frequency variation

Give a  variation for the grid frequency s in the peak
of FR’’(t)

Substitute c= s and solving will give
VR = Vg sin(St)
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constructing unit vector (contd.)

Mitigating the effect of grid frequency variation (contd.)

VR = Vg sin(St)

Vgcos = 2F’’R(peak)

Solve the following mathematical relation

F1(t) = -cos(St+)

F2(t) = sin(St+)    tVVtVt SggSgS  sinsincoscossin 

    tVVtVt SggSgS  cossinsincoscos 

The following trignometric relation can be
used to eliminate the phase angle 
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constructing unit vector (contd.)

Mitigating the effect of grid frequency variation (contd.)
VR = Vg sin(St)

Substituting

Vgcos = 2F’’R(peak)



    tVVtVt SggSgS  sinsincoscossin 

Rewriting the relation
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constructing unit vector (contd.)

Mitigating the effect of grid frequency variation (contd.)
VR = Vg sin(St)

Substituting

Vgcos = 2F’’R(peak)



    tVVtVt SggSgS  cossinsincoscos 

Rewriting the relation
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constructing unit vector (contd.)

Comparing steady state term of U1(t) and U2(t)

 Inference from the above result

U1(t) and U2(t) are 900 displaced

At the zero crossing of U1(t), U2(t) will be in peak and vice
versa

Unit magnitude of U1(t) and U2(t) can be obtained by
dividing the term by its own magnitude

U1(t) is phase shifted from grid voltage by angle (-)
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Mitigating the effect of grid frequency variation (contd.)
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constructing unit vector (contd.)

 Inference from the above result (contd.)

Fix the corner frequency of LPF (c) is equal
to s = 250 rad/sec, where grid frequency fs
= 50Hz

Let Grid frequency varies a maximum of
10% (45Hz to 55Hz)

Give a  variation and substitute c= s in
the phase angle (-)

VR = Vg sin(St)
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Mitigating the effect of grid frequency variation (contd.)
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constructing unit vector (contd.)

Phase error with variation in grid frequency

Phase shift, (-) = 0.320 for -10% grid frequency variation

Mitigating the effect of grid frequency variation (contd.)
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constructing unit vector (contd.)
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Overview of the presentation

Constructing two unit magnitude 900 displaced components

Mitigating the effect of grid frequency variation

Approximation method

Rigorous method
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constructing unit vector (contd.)

Mitigating the effect of grid frequency variation (contd.)
VR = Vg sin(St)

The approximation made in the earlier
derivation is:

The above method is Approximation method

Another method of finding out Vgsin(st) is:
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constructing unit vector (contd.)

Mitigating the effect of grid frequency variation (contd.)
VR = Vg sin(St)

Substituting

Vgcos = 2F’’R(peak)



    tVVtVt SggSgS  sinsincoscossin 

Rewriting the relation
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constructing unit vector (contd.)

Phase error with variation in grid frequency

Phase shift, (-) = 00 for any grid frequency

Mitigating the effect of grid frequency variation (contd.)
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constructing unit vector (contd.)
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constructing unit vector (contd.)

Test results

Grid frequency (simulated using function generator)
is varied at t=t1 from 50Hz to 45Hz

Mitigating the effect of grid frequency variation (contd.)

Grid voltage and unit vector without 

compensation for grid frequency variation

Grid voltage and unit vector with 

compensation for grid frequency variation
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constructing unit vector (contd.)

Test results

Steady state waveform at 25Hz and 75Hz with
approximation method

Mitigating the effect of grid frequency variation (contd.)

Frequency = 25Hz Frequency = 75Hz
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constructing unit vector (contd.)

Test results

Step change of frequency from 25Hz and 75Hz as
well as from 75Hz to 25Hz

Mitigating the effect of grid frequency variation (contd.)

Grid voltage and unit vector without 

compensation for grid frequency variation

Grid voltage and unit vector with 

compensation for grid frequency variation
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Conclusions

 Single grid voltage is considered for the construction of unit
vector

 Two unity magnitude fundamental sinusoidal quantities,
which are displaced by 900 from each other

One of the unit vector is in phase with grid voltage
irrespective of the grid frequency variation
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Thank you
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