

PLL and Grid Synchronization

by Subhash Joshi T G Email: subhashj@cdac.in

SUMMARY OF PRESENTATION

- \triangleright Unit vectors and its significance
- \triangleright Basics of transformations
- ▶ Session 1: Unit Vectors For 3 ϕ Balanced/Unbalanced Grid
	- \checkmark Selection of reference variable for control
	- \checkmark Selection of output parameter for PI-controller
	- \checkmark Design of PI-controller constants
	- \checkmark System bandwidth and method to select bandwidth
	- \checkmark Unit vector under unbalanced grid condition
	- \checkmark Test results
	- \checkmark A Simple method for unit vector construction for balanced grid
- \triangleright Session 2: Unit Vectors For 1 ϕ Grid
	- \checkmark Constructing two unit magnitude 90 \textdegree displaced components
	- \checkmark Mitigating the effect of grid frequency variation
		- \checkmark Approximation method
		- \checkmark Rigorous method
	- T est results $2 \text{ of } 63$

 $sin \rho$

What is unit vector ?

- 4.00 Two unity magnitude fundamental 3.00 sinusoidal quantities, which are displaced by 90⁰ from each other
- \triangleright One of the unit vector is in phase with grid $\frac{1}{200}$ voltage
- \triangleright This should be free from harmonics

 $cos \rho$

Varid/100

- \triangleright Phase angle error from grid voltage should be minimum **Significance of unit vector ?**
- **≻ STATCOM is an independent voltage source**
- Unit vector helps to synchronize STATCOM voltage and Grid voltage
- Also unit vector is used to extract the active and reactive power component separately
- \triangleright It is also used to separate the individual harmonics in case of active power filters **3 of 63**

Transformations

 \triangleright 3 ϕ to α - β transformations

$$
X_{\alpha} = X_R - \frac{1}{2}(X_Y + X_B)
$$

$$
X_{\beta} = \frac{\sqrt{3}}{2} (X_Y - X_B)
$$

 α - β to D-Q transformations

 $\overline{}$ \lceil $\overline{}$ $\overline{\mathsf{L}}$ $\sqrt{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\sqrt{2}$ $\overline{}$ \rfloor^{-} \lceil $\overline{}$ $\overline{}$ $\sqrt{}$ β α *X X* U U *U U X X q d* 2 \sim 1 1 2

 $\angle U_1$ and U_2 unity magnitude components, where U_2 lag U_1 by 90^0 \triangleright For grid connected system U₁ is aligned along R-phase grid voltage

SESSION 1

UNIT VECTORS FOR THREE PHASE BALANCED/UNBALANCED GRID

 \triangleright Let the grid voltages are,

$$
V_R = V_g \sin \omega_g t
$$

\n
$$
V_Y = V_g \sin(\omega_g t - 120)
$$

\n
$$
V_B = V_g \sin(\omega_g t + 120)
$$

 \triangleright Objective,

$$
U_1 = \sin \omega_g t
$$

$$
U_2 = -\cos \omega_g t
$$

 \triangleright Apply three phase to two phase (α - β) transformation,

$$
V_a = V_R - \frac{1}{2}(V_Y + V_B) = \frac{3}{2}V_g \sin \omega_g t
$$

$$
V_\beta = \frac{\sqrt{3}}{2}(V_Y - V_B) = -\frac{3}{2}V_g \cos \omega_g t
$$

- \triangleright If U₁ and U₂ are known then V α and V_B can be transformed to D-Q axis
- \triangleright Assume U₁ and U₂ are known, then

 \triangleright Let U₁ is not synchronized to V_R and its frequency is ω_g ['], then,

$$
\begin{bmatrix} V_d \\ V_q \end{bmatrix} = \begin{bmatrix} \sin \omega'_g t & -\cos \omega'_g t \\ \cos \omega'_g t & \sin \omega'_g t \end{bmatrix} \begin{bmatrix} \frac{3}{2} V_g \sin \omega_g t \\ \frac{3}{2} V_g \cos \omega_g t \end{bmatrix} = \begin{bmatrix} \frac{3}{2} V_g \cos((\omega_g - \omega'_g)t) \\ \frac{3}{2} V_g \sin((\omega_g - \omega'_g)t) \end{bmatrix}
$$

 \triangleright When U₁ gets synchronized with V_R, then $\omega_g = \omega_g'$ and,

$$
\begin{bmatrix} V_d \\ V_q \end{bmatrix} = \begin{bmatrix} \frac{3}{2} V_s \\ 2 \end{bmatrix}
$$

 \triangleright If V_q = 0 is ensured, then U₁ will be synchronized to V_R

 \triangleright To ensure V_a = 0, feedback with simple PI-controller can be used

- \triangleright PI-controller will be sufficient,
	- \triangleright Since V_d and V_q are d.c. quantities and variation in e(t) with time is minimal

- What should be the output parameter of PI-controller ?
	- \triangleright PI-controller performs well when the selected output parameter magnitude swing is minimal
	- \triangleright Our objective is to obtain U₁ and U₂, but they are sinusoidally varying quantities and results in large swing in magnitude
	- \triangleright The angle of U₁ and U₂ are also will be varying with time in large extend
	- \triangleright Instead the frequency of U₁ and U₂ can be thought of selecting as output parameter of PI-controller

$$
U_1 = \sin \omega t, \quad U_2 = -\cos \omega t
$$

- What should be the output parameter of PI-controller ?
	- \triangleright If the grid frequency variation is minimal, then
	- \triangleright PI-controller performance can be further improved by selecting the output of PI-controller as $\Delta\omega$ (variation in grid frequency) instead of absolute grid frequency, ω

- \triangleright Design of PI-controller constants ?
	- > At time t=0, let grid and unit vectors (U₁ and U₂) frequency be ω_{g}
	- \triangleright At time t=0⁺, grid frequency changed from ω_{g} to ω_{g}^{\prime} and unit vector frequency remains at $\omega_{\rm q}$
	- $\geq 3\phi$ to α - β transformation of grid voltage is,

$$
V_{\alpha} = \frac{3}{2} V_{g} \sin \omega'_{g} t, \quad V_{\beta} = -\frac{3}{2} V_{g} \cos \omega'_{g} t
$$

 \triangleright α - β to D-Q transformation gives,

$$
\begin{bmatrix} V_d \\ V_q \end{bmatrix} = \begin{bmatrix} \sin \omega_g t & -\cos \omega_g t \\ \cos \omega_g t & \sin \omega_g t \end{bmatrix} \begin{bmatrix} \frac{3}{2} V_g \sin \omega_g' t \\ \frac{3}{2} V_g \cos \omega_g' t \end{bmatrix} = \begin{bmatrix} \frac{3}{2} V_g \cos((\omega_g' - \omega_g) t) \\ \frac{3}{2} V_g \sin((\omega_g' - \omega_g) t) \end{bmatrix}
$$

- \triangleright Design of PI-controller constants ?
	- \triangleright Assuming grid frequency variation is minimal, then

$$
\sin((\omega'_g - \omega_g)t) \approx (\omega'_g - \omega_g)t
$$

 \triangleright Hence V_q is,

$$
V_q = \frac{3}{2} V_g (\omega'_g - \omega_g)t
$$

$$
\begin{bmatrix} V_d \\ V_q \end{bmatrix} = \begin{bmatrix} \frac{3}{2}V_g \cos((\omega_g' - \omega_g)t) \\ \frac{3}{2}V_g \sin((\omega_g' - \omega_g)t) \end{bmatrix}
$$

- \triangleright Design of PI-controller constants ?
	- \triangleright Assuming grid frequency variation is minimal, then

$$
\sin((\omega'_g - \omega_g)t) \approx (\omega'_g - \omega_g)t
$$

 \triangleright Hence V_q is,

$$
V_q = \frac{3}{2} V_g (\omega'_g - \omega_g)t
$$

$$
\begin{bmatrix} V_d \\ V_q \end{bmatrix} = \begin{bmatrix} \frac{3}{2}V_g \cos((\omega_g' - \omega_g)t) \\ \frac{3}{2}V_g \sin((\omega_g' - \omega_g)t) \end{bmatrix}
$$

- **► Design of PI-controller constants?**
	- \triangleright Assuming grid frequency variation is minimal, then

$$
\sin((\omega'_g - \omega_g)t) \approx (\omega'_g - \omega_g)t
$$

 \triangleright Hence V_q is,

$$
V_q = \frac{3}{2} V_g (\omega'_g - \omega_g)t
$$

$$
\begin{bmatrix} V_d \\ V_q \end{bmatrix} = \begin{bmatrix} \frac{3}{2}V_g \cos((\omega_g' - \omega_g)t) \\ \frac{3}{2}V_g \sin((\omega_g' - \omega_g)t) \end{bmatrix}
$$

- \triangleright Design of PI-controller constants ?
	- The block diagram can be further reduced by removing the quantities not taking part in transients
	- \triangleright ω_{ref} is constant and no effect on transients
	- \triangleright Once grid voltage is changed from $\omega_{g}^{}$ to ω_{g}^{\prime} , ω_{g}^{\prime} can be assumed to be constant
	- \triangleright Simplified block diagram is,

- Design of PI-controller constants ?
	- Open loop transfer function of the system is given by,

- Design of PI-controller constants ?
	- \triangleright Find asymptotic bode plot of the system,
	- \triangleright For zero:
		- \blacktriangleright Corner frequency, $\omega_{_Z}$ $=$ $k_{_I}/k_{_P}$ $\omega_{\scriptscriptstyle{-}} = k_{\scriptscriptstyle{f}}/k$
		- Magnitude plot: +20dB/decade
		- > Phase plot: +45⁰/decade
	- \triangleright For poles:
		- \triangleright Corner frequency, $\omega_{p} = \sqrt{k_{p}}$ $\omega_z = \sqrt{k}$
		- Magnitude plot: -40dB/decade
		- \triangleright Phase plot: -180⁰

- \triangleright Design of PI-controller constants ?
	- \triangleright Closed loop system will be stable,
		- \triangleright If the open loop gain crosses 0dB (unity gain) with -20dB/decade and ensuring atleast -135⁰ Phase margin 100
	- \triangleright If $\omega_z > \omega_p$, leads to a phase close to -180⁰ makes system prone to unstable
	- \triangleright Hence to make system more stable, keep $\omega_z \leq \omega_p$
	- \triangleright Since phase plot of zero has a slope of +45⁰/decade, for ω_z = $\omega_{\rm p}$, the phase is -135⁰ leads to phase margin of 45⁰

Design of PI-controller constants ?

$$
\triangleright \ \omega_z = \omega_p \ \text{implies},
$$

$$
\frac{k_i}{k_p} = \sqrt{k_i}
$$

$$
k_p = \sqrt{k_i}
$$

 One more component present in the open loop transfer function is,

$$
\frac{3}{2}V_{g}
$$

 \triangleright This will not affect the phase plot, but gain cross over frequency will be pushed further away increasing the bandwidth of the system

Unit vector for Balanced/Unbalanced Grid condition k k k </sub>

- \triangleright Find system bandwidth ?
	- Defined as the frequency at which the closed-loop magnitude is equal to -3 dB
	- \triangleright For phase of -120⁰, the open loop bandwidth and closed loop bandwidth are found to be closer
	- \triangleright Since gain at $\sqrt{k_i}$ is 0dB, the gain cross over frequency of open loop system is,

$$
\omega_{g}=\sqrt{k_{i}}
$$

 $p = \sqrt{\kappa_i}$

Unit vector for Balanced/Unbalanced Grid condition $k_{\scriptscriptstyle n}$

- \triangleright Find system bandwidth ?
	- The modified crossover frequency considering 3/2V_g is,
	- \triangleright Gain at $\omega_{g} = \sqrt{k_{i}}$ is, $\overline{}$ \int $\left.\rule{0pt}{12pt}\right)$ $\overline{}$ \setminus $\bigg($ *Vg* 2 3 20log
	- Gain at new crossover frequency $\left\langle \omega_{_{\mathrm{g}}}^{\prime}\right\rangle$ is 0dB
	- \triangleright Slope during this time is -20dB/decade

$$
\frac{0 - 20 \log\left(\frac{3}{2}V_g\right)}{\log \omega'_g - \log\left(\sqrt{k_i}\right)} = -20
$$

 $p = \sqrt{\kappa_i}$

- \triangleright Find system bandwidth ?
	- \triangleright The modified crossover frequency considering 3/2V_g is,

$$
\omega'_g = \frac{3}{2} V_g \sqrt{k_i}
$$

 \triangleright Closed loop bandwidth (appx.) is,

$$
BW = \frac{3}{2}V_g k_p
$$

 Once the bandwidth is fixed proportional constant (k_p) can be found

- \triangleright How to fix the bandwidth ?
	- \triangleright Bandwidth is decided by the harmonics present in V_d and V_q components as well as the response time requirement in transient conditions
	- \triangleright For a balanced three wire system the minimum harmonics expected on V_d and V_q are 300Hz (transformation of 5th and 7th harmonics)
		- *Here bandwidth of 30Hz to 60Hz will be sufficient for proper attenuation of harmonics in grid voltages*

\triangleright In Summary:

- \triangleright Based on the application and transient requirement fix the bandwidth
- \triangleright If grid voltage peak is known, proportional constant (k_p) can be found

$$
k_p = \frac{BW}{3\sqrt{V_g}}
$$

 \triangleright Once k_p is known integral constant k_i can be computed

$$
k_i = k_p^2
$$

 $p = \sqrt{\kappa_i}$

- Unit vector under unbalanced grid condition ?
	- \triangleright Under unbalanced grid conditions, the grid voltage contains fundamental positive sequence as well as fundamental negative sequence components
	- Let us construct the unit vector such that it is **synchronized with fundamental positive sequence component**
	- \triangleright As earlier fundamental positive sequence present in the grid voltage when transformed to D-Q reference frame reflected as d.c. component and fundamental negative sequence present in the grid voltage reflected as 100Hz component
	- \triangleright Since we required only d.c. component in V_q , 100Hz component can be easily removed by using simple low pass filter of corner frequency around 10Hz

- Unit vector under unbalanced grid condition ?
	- \triangleright $\omega_{\rm C}$ is the corner frequency of low pass filter
	- \triangleright Low pass filter will not affect the information of fundamental positive sequence, as it is a d.c. quantity

\triangleright Test results

 \triangleright Transient performance analysis carried out by simulation using PSIM simulation package

\triangleright Test results

 \triangleright Transient performance analysis carried out by simulation using PSIM simulation package

M Pos: 1.400ms

Fil Trio'd

MEASURE

Unit vector for Balanced/Unbalanced Grid condition

\triangleright Test results

 Unit vector implemented for unbalanced grid condition in TI's DSP TMS320F2812

- \triangleright A simple method exists based on trigonometry to compute unit vector for balanced grid condition
- \triangleright Transform three phase grid voltage to α - β co-ordinate

$$
V_{\alpha}(t) = \frac{3}{2} V_{g} \sin \omega_{g} t, \quad V_{\beta}(t) = -\frac{3}{2} V_{g} \cos \omega_{g} t
$$

 \triangleright The output of Low Pass Filter (LPF) is given by,

$$
V'_{\alpha}(s) = \frac{s}{s + \omega_c} V_{\alpha}(s), \quad V'_{\beta}(s) = \frac{s}{s + \omega_c} V_{\beta}(s)
$$

 \triangleright Output of LPF in time domain is,

$$
V'_{\alpha}(t) = \frac{3}{\sqrt{\omega_g^2 + \omega_c^2}} \sin(\omega_g t - \phi), \quad V'_{\beta}(t) = -\frac{3}{\sqrt{\omega_g^2 + \omega_c^2}} \cos(\omega_g t - \phi)
$$

where, $\tan \phi = \frac{\omega_g}{\omega_c}$

- $\triangleright V'_\alpha(t)$ and $V'_\beta(t)$ are always 90⁰ displaced irrespective of grid frequency and corner frequency of LPF
- \triangleright At the zero crossing of $V'_\alpha(t)$, $V'_\beta(t)$ will be in peak and vice versa $V'_{\beta}(t)$, $V'_{\beta}(t)$
- \triangleright Unit magnitude of $V'_\alpha(t)$ and $V'_\beta(t)$ can be obtained by dividing the term by its own magnitude, 1

 \triangleright Block diagram of unit vector construction

 \triangleright Let us perform the following operations,

 \triangleright Phase angle (ρ) is minimum when $\omega_c=2\pi50$ *^c g* ω_{c} – ω_{g} $\omega + \omega$ ρ where, $\tan \rho = \frac{\omega_c - \mu}{\sigma}$

\triangleright Complete block diagram of unit vector construction

where, $\omega_c = 2\pi 50$

- \triangleright This method will introduce a small phase angle error when grid frequency varies
- Each harmonics is reduced by $\sqrt{\frac{2}{1+h^2}}$ when compared to fundomorphic fundamental 2 *h*

\triangleright Test results

SESSION 2

UNIT VECTORS FOR SINGLE PHASE GRID

- \triangleright Constructing two unit magnitude 90⁰ displaced components
- \triangleright Mitigating the effect of grid frequency variation
	- \checkmark Approximation method
	- \checkmark Rigorous method

Overview of the presentation

\triangleright Constructing two unit magnitude 90⁰ displaced components

- \triangleright Mitigating the effect of grid frequency variation
	- \checkmark Approximation method
	- \checkmark Rigorous method

Innovative method for constructing unit vector

- \triangleright Let R-phase grid voltage be, $V_R = V_g \sin(\omega_S t)$
- \triangleright Let the above voltage is passed through a LPF of corner frequency, ω_c
- Using Laplace analysis

$$
F_R(s) = \frac{V_g \omega_c \omega_s}{\omega_s^2 + \omega_c^2} \left(\frac{1}{s + \omega_c} + \left(\frac{\omega_c}{\omega_s} \right) \frac{\omega_s}{s^2 + \omega_s^2} - \frac{s}{s^2 + \omega_s^2} \right) \quad \frac{1}{V_R + \sqrt{V_R}} \quad \frac{Q_C}{s} \quad \frac{1}{F_R}
$$

 \triangleright The steady state output, $F_R(t)$ is given by

$$
F_R(t)|_{\text{steady}} = \frac{V_g \omega_C}{\sqrt{\omega_s^2 + {\omega_C}^2}} \sin(\omega_s t - \phi)
$$
 and $\tan \phi = \frac{\omega_s}{\omega_C}$

 \triangleright Transient term of $F_R(t)$ is given by,

$$
F_R(t)|_{\text{transient}} = \frac{V_g \omega_c \omega_s}{\left(\omega_c^2 + \omega_s^2\right)} e^{-\omega_c t}
$$

s

Using Laplace analysis

$$
F_R'(s) = V_g \omega_c^2 \omega_s \frac{1}{(\omega_s^2 + \omega_c^2)^2} \left(2\omega_c \frac{1}{s + \omega_c} + (\omega_s^2 + \omega_c^2) \frac{1}{(s + \omega_c)^2} - 2\omega_c \frac{s}{s^2 + \omega_s^2} + (\omega_c^2 - \omega_s^2) \frac{1}{s^2 + \omega_s^2}\right)
$$

 \triangleright The steady state output, $F_R'(t)$ is given by

$$
F_R'(t) = -\frac{V_g \omega_c^2}{(\omega_s^2 + \omega_c^2)} \cos(\omega_s t + \psi) \text{ and } \cos \psi = \frac{2\omega_c \omega_s}{(\omega_s^2 + \omega_c^2)}, \sin \psi = \frac{(\omega_c^2 - \omega_s^2)}{(\omega_s^2 + \omega_c^2)}
$$

 \triangleright Transient term of $F_R'(t)$ is given by,

$$
F_R'(t)|_{\text{transient}} = \frac{V_g \omega_c^2 \omega_s}{\left(\omega_c^2 + \omega_s^2\right)^2} \left(2\omega_c + \left(\omega_c^2 + \omega_s^2\right)t\right) e^{-\omega_c t}
$$

 \triangleright The steady state output, F_R "(t) is given by

$$
F_R^{''}(t) = \frac{V_g \omega_c \omega_s}{\left(\omega_s^2 + \omega_c^2\right)} \sin\left(\omega_s t + \psi\right) \text{ and } \cos\psi = \frac{2\omega_c \omega_s}{\left(\omega_s^2 + \omega_c^2\right)}, \sin\psi = \frac{\left(\omega_c^2 - \omega_s^2\right)}{\left(\omega_s^2 + \omega_c^2\right)}
$$

 \triangleright Transient term of F_R "(t) is given by,

$$
F_{\rm R}^{\text{''}}(t)|_{\text{transient}} = \frac{V_g \omega_c \omega_s}{\left(\omega_c^2 + \omega_s^2\right)} \left(\frac{\left(\omega_s^2 - \omega_c^2\right)}{\left(\omega_c^2 + \omega_s^2\right)} + \omega_c t\right) e^{-\omega_c t}
$$

\triangleright Comparing steady state term of $F_R'(t)$ and $F_R''(t)$

$$
F_R'(t) = -\frac{V_g \omega_C}{(\omega_S^2 + \omega_C^2)} \cos(\omega_S t + \psi)
$$

$$
F_R''(t) = \frac{V_g \omega_C \omega_S}{(\omega_S^2 + \omega_C^2)} \sin(\omega_S t + \psi)
$$

 $\left(\omega_s^2+\omega_c^2\right)$

 S ^{*C*}*C*

 $\ddot{}$

 $\omega_{\rm c}$ + $\omega_{\rm i}$

2

V

- $F_R'(t)$ and $F_R''(t)$ are always 90⁰ displaced irrespective of grid frequency and corner frequency of LPF
- \triangleright At the zero crossing of $F_R''(t)$, $F_R'(t)$ will be in peak and vice versa
- \triangleright Unit magnitude of $F_R'(t)$ and $F_R''(t)$ can be obtained by dividing the term by its own magnitude

 \triangleright Inference from the above result

 \checkmark F₂(t) is phase shifted from grid voltage by an angle ψ

 $V_R = V_g \sin(\omega_S t)$

- \triangleright Inference from the above result (contd.) \checkmark If corner frequency of LPF (ω_{c}) is set equal to grid frequency (ω_{s}) , i.e. $\omega_{c} = \omega_{s}$: \triangle phase shift $\Psi = 0$ $\mathbf{\hat{*}}$ F₂(t) is in phase with grid voltage and $\mathsf{F}_\mathsf{1}(\mathsf{t})$ is lagging the grid voltage by 90^{o}
- \triangleright Fix the corner frequency of LPF (ω_c) is equal to $\omega_s = 2\pi 50$ rad/sec, where grid frequency $f_s = 50$ Hz
- \triangleright Let Grid frequency varies a maximum of \pm 10% (45Hz to 55Hz)
- \triangleright Phase shift, $\psi = 6^{\circ}$ for -10% of grid frequency variation
- Loose the proper synchronization

\triangleright Phase error with variation in grid frequency

Overview of the presentation

Constructing two unit magnitude 900 displaced components

\triangleright Mitigating the effect of grid frequency variation

- \checkmark Approximation method
- \checkmark Rigorous method

\triangleright Mitigating the effect of grid frequency variation

- \checkmark Give a $\Delta\omega$ variation for the grid frequency $\omega_{\rm s}$ in the peak of F_{R} "(t)
- \checkmark Substitute $\omega_c = \omega_s$ and solving will give

 $=$

 $\omega = \omega$

 $R \mid S \cap S$

 $R \mid S$ *s*

c s

 $c = \omega_{\rm s}$

 $\omega = \omega$

''

''

F

F

 $=\omega + \Delta$

 $\omega = \omega + \Delta \omega$

 $\omega = \omega + \Delta \omega$

 $=$

 $(t) = \frac{V_g \omega_C \omega_S}{(\omega_S^2 + \omega_C^2)} \sin (\omega_S t + \psi)$ $\omega_{\rm c}$ + $\omega_{\rm i}$ $\omega_{\alpha}\omega$ $\, +$ ╅ Ξ $f(t) = \frac{V_g \omega_c \omega_s}{t} \sin(\omega_s t)$ *V* $F_R(t) = \frac{s}{2} + \frac{s}{2} + \sin(\omega_s)$ S \mathcal{C} g^{ω} c^{ω} s $\sum_{R}^{R} (t) = \frac{g}{2} \frac{c}{2} \sin \frac{\pi}{2}$

$$
\checkmark
$$
 Peak of F_R ''(t), $F_{R(peak)}'$, is more or less independent of grid frequency variation

 I I I I

 I I

ſ

 $\overline{}$ I

1

ſ

L

g s

 $1 + \left(\frac{\Delta \omega}{\epsilon} \right) + \frac{1}{2}$

 ω

 ω

l

 $\frac{g}{2}$ if $\frac{1}{2}$

ſ

2

 $=\omega + \Delta \omega \cong \frac{V_g}{\Delta}$ if $\frac{1}{2} \Delta$

V

L

g V

$$
F''_{R(peak)} \cong V_g/2 \qquad \text{for } \omega_c = \omega_s
$$

I I

is negligible compare to1

J

l I

J

 I L

2

 S *j* \sim \sim \sim S

l l

J

2

 I I

L

 \backslash

 $+\left(\frac{\Delta\omega}{\pi}\right)+\frac{1}{2}\left(\frac{\Delta\omega}{\pi}\right)$

 I I

 ω

ſ

 $+|\Delta$

J

ſ

l I

 \backslash

J

 ω

2

l I

J

s

 ω

 ω

 \backslash

l l

J

 \backslash

 ω

 \setminus

 \backslash

 ω

I

 \setminus

2

Mitigating the effect of grid frequency variation (contd.)

 $\sin \left(\omega_s t + \psi\right) V_g \cos \psi - \cos\left(\omega_s t + \psi\right) V_g \sin \psi = V_g \sin \omega_s t$ $-\cos(\omega_s t + \psi) V_g \cos \psi - \sin(\omega_s t + \psi) V_g \sin \psi = -V_g \cos \omega_s t$ \triangleright The following trignometric relation can be used to eliminate the phase angle ψ

$$
\blacktriangleright \mathsf{V}_\mathsf{g}\mathsf{cos}\psi = 2\mathsf{F}"_{\mathsf{R}(\mathsf{peak})}
$$

 \triangleright Solve the following mathematical relation

$$
2F'_{R(peak)} - V_g = \frac{2V_g \omega_c^2}{(\omega_s^2 + \omega_c^2)} - V_g = V_g \frac{(\omega_c^2 - \omega_s^2)}{(\omega_s^2 + \omega_c^2)}
$$

$$
2F'_{R(peak)} - V_g = V_g \sin \psi
$$

$$
V_g \sin \psi \cong 2F'_{R(\text{peak})} - 2F''_{R(\text{peak})}
$$

$$
V_R = V_g \sin(\omega_S t)
$$

\n
$$
F_1(t) = -\cos(\omega_S t + \psi)
$$

\n
$$
F_2(t) = \sin(\omega_S t + \psi)
$$

\n
$$
\sin \psi = \frac{(\omega_c^2 - \omega_s^2)}{(\omega_s^2 + \omega_c^2)}
$$

\n
$$
\cos \psi = \frac{2\omega_c \omega_s}{(\omega_s^2 + \omega_c^2)}
$$

\n
$$
F''_R(t) = \frac{V_g \omega_c \omega_s}{(\omega_s^2 + \omega_c^2)} \sin(\omega_s t + \psi)
$$

\n
$$
F''_R(pezk) = \frac{V_g \omega_c \omega_s}{(\omega_c^2 + \omega_s^2)}
$$

\n
$$
F''_R(pezk) = V_g/2 \text{ for } \omega_c = \omega_s
$$

\n
$$
F'_R(t) = -\frac{V_g \omega_c^2}{(\omega_s^2 + \omega_c^2)} \cos(\omega_s t + \psi)
$$

\n
$$
F'_R(pezk) = \frac{V_g \omega_c^2}{(\omega_c^2 + \omega_{s_1^2})_{\text{off}} \cos(\omega_s t + \psi)}
$$

F

J λ

constructing unit vector (contd.)

Mitigating the effect of grid frequency variation (contd.)

 $V_R = V_g \sin(\omega_S t)$ \triangleright Substituting V_{o} cos $\psi = 2F''_{\text{R(peak)}}$ $\mathcal{V}\left(\mathbf{V}_{g}\right)$ sin $\psi \cong 2F_{R(\text{peak})}^{\prime}-2F_{R(\text{peak})}^{\prime\prime}$ $\sin \left(\omega_s t + \psi\right) V_g \cos \psi - \cos\left(\omega_s t + \psi\right) V_g \sin \psi = V_g \sin \omega_s t \int_0^t R[\text{peak}] \sin \left(\omega_c^2 + \omega_s^2\right)$ \checkmark Rewriting the relation $(t) = \frac{v_g \omega_C \omega_S}{(\omega_S^2 + \omega_C^2)} \sin (\omega_S t + \psi)$ $\omega_{\rm c}$ + $\omega_{\rm c}$ $\omega_{c}\omega$ $\boldsymbol{+}$ $\boldsymbol{+}$ ═ $f(t) = \frac{V_g \omega_c \omega_s}{t} \sin(\omega_s t)$ *V* $F_R(t) = \frac{s}{\sqrt{2}} \frac{c}{\sqrt{2}} \sin(\omega_s)$ S \sim C $g^{\bm{\omega}}$ $c^{\bm{\omega}}$ s $\sum_{R}^{r} (t) = \frac{s}{2} \frac{c}{2} \sin \frac{\sin \theta}{2}$ $(t) = -\frac{v_g \omega_C}{(\omega_s^2 + \omega_c^2)} \cos(\omega_s t + \psi)$ ω $\boldsymbol{+}$ $\boldsymbol{+}$ $=$ $$ $f(t) = -\frac{V_g \omega_c}{t} cos(\omega_c t)$ *V* $F_R(t) = -\frac{s}{\sqrt{2}} \frac{\sigma}{2}$ $\cos(\omega_s)$ S \sim C $g^{\boldsymbol{\omega}} c$ *R* cos ² ² 2 $V_g \sin \omega_s t \approx U_1 = \sin (\omega_s t + \psi) (2F''_{R(\text{peak})}) - \cos (\omega_s t + \psi) (2F'_{R(\text{peak})} - 2F''_{R(\text{peak})})$ $(\textit{peak})^{\dagger}\overline{(\omega_c^2+\omega_s^2)}$ $\overline{}$ L $=\frac{1}{\omega_0^2 + \omega_0^2}$ '' $c \sim s$ $V_{g} \omega_{c} \omega_{s}$ *R peak F* ω_{0} + ω . $\omega_{\alpha}\omega$ $(\omega_c^2 + \omega_s^2)$ $=\frac{6}{(\omega_0 2 + \omega_2)^2}$ $V_g \omega_c^2$ $c \sim s$ $V_{\overline{g}}\omega_{\overline{c}}$ *R peak F* ω_{0} + ω_{0} ω . $\left(\omega_{\rm s}t+\psi\right)$ l ך L $= 2F_R$ ["](t) + $2F_R$ ['](t) + $2\left[F_R''(peak) \cos(\omega_s t + \psi_s) \right]$ *t* $)+2F$ $U_1 = 2F_R''(t) + 2F_R'(t) + 2\left|F''_R(peak)\right| \cos \theta$

$$
U_1 = \frac{2V_g \omega_c \sqrt{\omega_s^2 + (\omega_c - \omega_s)^2}}{(\omega_s^2 + \omega_c^2)} \sin(\omega_s t + \psi - \theta) \quad \text{and} \quad \tan \theta = \frac{(\omega_c - \omega_s)}{\omega_s}
$$

L

L

 $\overline{}$

Mitigating the effect of grid frequency variation (contd.)

$$
\begin{aligned}\n&\text{\textcircled{\char'44} } \mathsf{Newtonting the relation} \\
&- \cos(\omega_{s}t + \psi)V_{g} \cos \psi - \sin(\omega_{s}t + \psi)V_{g} \sin \psi = -V_{g} \cos \omega_{s}t \\
&\text{\textcircled{\char'44} } \frac{F_{R(peak)} - V_{g}\omega_{c}^{2}}{[\omega_{c}^{2} + \omega_{s}^{2}]}\n\end{aligned}
$$
\n
$$
\begin{aligned}\n&\text{Substituting} \\
&\text{\textcircled{\char'44} } \mathsf{Substituting} \\
&\text{\textcircled{\char'44} } \mathsf{V}_{g} \cos \psi = 2F'_{R(peak)} \\
&\text{\textcircled{\char'44} } \mathsf{R}(peak) \\
&\text{\textcircled{\char'44} } \mathsf{V}_{g} \sin \psi \cong 2F'_{R(peak)} \\
&\text{\textcircled{\char'44} } \mathsf{P}_{R(peak)} - 2F''_{R(peak)} \\
&\text{\textcircled{\char'44} } \mathsf{P}_{R(peak)} - \sin(\omega_{s}t + \psi) \\
&\text{\textcircled{\char'44} } \mathsf{P}_{R(black)} - \frac{V_{g}\omega_{c}^{2}}{[\omega_{s}^{2} + \omega_{c}^{2}]}\sin(\omega_{s}t + \psi) \\
&\text{\textcircled{\char'44} } \mathsf{P}_{R(peak)} - \frac{V_{g}\omega_{c}^{2}}{[\omega_{s}^{2} + \omega_{c}^{2}]}\cos(\omega_{s}t + \psi) \\
&\text{\textcircled{\char'44} } \mathsf{P}_{R(peak)} - \frac{V_{g}\omega_{c}^{2}}{[\omega_{s}^{2} + \omega_{c}^{2}]}\cos(\omega_{s}t + \psi) \\
&\text{\textcircled{\char'44} } \mathsf{P}_{R(peak)} - \frac{V_{g}\omega_{c}^{2}}{[\omega_{s}^{2} + \omega_{c}^{2}]}\cos(\omega_{s}t + \psi) \\
&\text{\textcircled{\char'44} } \mathsf{P}_{R(peak)} - \frac{V_{g}\omega_{c}^{2}}{[\omega_{s}^{2} + \omega_{c}^{2}]}\cos(\omega_{s}t + \psi) \\
&\text{\textcircled{\char'44} } \mathsf{P}_{R(peak)} - \frac{V_{g}\omega_{c}^{2}}{[\omega_{s}^{
$$

$$
U_2 = -\frac{2V_g\omega_c\sqrt{{\omega_s}^2 + (\omega_c - \omega_s)^2}}{(\omega_s^2 + \omega_c^2)}\cos(\omega_s t + \psi - \theta) \quad \text{and} \quad \tan\theta = \frac{(\omega_c - \omega_s)}{\omega_s}
$$

\triangleright Comparing steady state term of U₁(t) and U₂(t) $V_R = V_g \sin(\omega_S t)$ Mitigating the effect of grid frequency variation (contd.)

$$
U_1 = \frac{2V_g \omega_C \sqrt{{\omega_s}^2 + (\omega_C - \omega_S)^2}}{(\omega_s^2 + \omega_C^2)} \sin(\omega_s t + \psi - \theta)
$$

$$
U_2 = -\frac{2V_g \omega_C \sqrt{{\omega_s}^2 + (\omega_C - \omega_S)^2}}{(\omega_s^2 + \omega_C^2)} \cos(\omega_s t + \psi - \theta)
$$

 \triangleright Inference from the above result

- \checkmark U₁(t) and U₂(t) are 90⁰ displaced
- \checkmark At the zero crossing of U₁(t), U₂(t) will be in peak and vice versa
- \checkmark Unit magnitude of U₁(t) and U₂(t) can be obtained by dividing the term by its own magnitude
- $V \cup_{1}$ (t) is phase shifted from grid voltage by angle (ψ - $\frac{\Theta}{50}$) 50 of 63

 $\left(\omega_c^2-\omega_s^2\right)$

S

 C ω_S $\omega_{\rm c}$ + ω .

 $\omega_c - \omega$

 $(\omega_{_C}$ – $\omega_{_S})$

 C ω _S ω

 $=\frac{1}{2} \frac{\omega_c}{a}$

2

2 2

 $\left(\omega_s^2 + \omega_c^2\right)$

 S \sim C

 $\left(\omega_s^2 + \omega_c^2\right)$

 $C^{\boldsymbol{\omega}}S$

 S \mathcal{C}

 $\,+\,$

 $\omega_{\rm c}$ + $\omega_{\rm c}$

 $\, +$

 $\omega_{\scriptscriptstyle C} \omega$

 $V_R = V_g \sin(\omega_S t)$

 $\tan \theta = \frac{(\omega_c - \omega)}{\omega}$

sin

cos

 ψ

 ψ

=

constructing unit vector (contd.)

Mitigating the effect of grid frequency variation (contd.)

 \triangleright Inference from the above result (contd.)

- \checkmark Fix the corner frequency of LPF (ω_c) is equal to $\omega_{\rm s}$ = 2 π 50 rad/sec, where grid frequency f_s $=$ 50Hz
- Let Grid frequency varies a maximum of \pm 10% (45Hz to 55Hz)
- \checkmark Give a $\Delta\omega$ variation and substitute $\omega_c = \omega_s$ in the phase angle $(\psi - \theta)$

$$
\tan(\psi - \theta) = \frac{\tan \psi - \tan \theta}{1 + \tan \psi \tan \theta}
$$

\n
$$
\tan(\psi - \theta) \Big|_{\substack{\omega_s = \omega_s + \Delta \omega \\ \omega_c = \omega_s}} \leq -\frac{\frac{1}{2} \left(\frac{\Delta \omega}{\omega_s}\right)^2}{\left(1 + \left(\frac{\Delta \omega}{\omega_s}\right)\right)^2} \text{ if } 2\left(\frac{\Delta \omega}{\omega_s}\right)^2 \text{ and } \frac{1}{2} \left(\frac{\Delta \omega}{\omega_s}\right)^3 \text{ is negligible compare to 1}
$$

 \triangleright Phase error with variation in grid frequency Mitigating the effect of grid frequency variation (contd.)

 \triangleright Phase shift, (ψ - θ) = 0.32⁰ for -10% grid frequency variation

 \Box 1ph with comp (appx)

Overview of the presentation

\triangleright Constructing two unit magnitude 90⁰ displaced components

\triangleright Mitigating the effect of grid frequency variation

- Approximation method
- \checkmark Rigorous method

 $\left(\omega_c^2 - \omega_s^2\right)$

 C ω_S $\omega_{\rm c}$ + ω .

 $\omega_c - \omega$

 $=\frac{1}{2} \frac{\omega_c}{a}$

 I L

 $V_g \omega_c^2$

 $\left(peak\right)$ $\left[\overline{\left(\omega_c^2 + \omega_s^2 \right)} \right]$

2 2

 $\left(\omega_s^2 + \omega_c^2\right)$

 S \sim C

 $V_{g} \omega_{c} \omega_{s}$

 $\omega_{\alpha}\omega$

J \setminus

 $\, +$

 $=\frac{6}{(\omega_0^2 + \omega_0^2)}$

 ω_{0} + ω .

 $c \sim s$

 $V_{\overline{g}}\omega_c$

 ω

 $(\omega_c^2 + \omega_s^2)$ $=\frac{1}{(\omega_0^2 + \omega_0^2)}$

 $\omega_{\alpha}^2 + \omega_{\alpha}$

c s

 $V_R = V_q \sin(\omega_S t)$

sin

''

F

F

 ψ

 $\left(peak\right) ^{-}$

R peak

R peak

constructing unit vector (contd.)

Mitigating the effect of grid frequency variation (contd.)

- \triangleright The approximation made in the earlier derivation is:
	- $2F_R'$ $V_{g} - V_{g} = V_{g} \sin \psi$ is negligible compare to1 2 2 $\int_{c}^{\infty} |\omega_{c} - \omega_{s}| \leq \frac{g}{2}$ if $\frac{1}{2}$ l l J \backslash L L \setminus $=\omega_{\rm s}$ $\approx \frac{V_g}{\sqrt{2}}$ if $\frac{1}{2}$ $=$ ω + Δ *s g V s s R ^c ^s F* ω $\omega = \omega$ $\approx \frac{g}{g}$ if $\frac{1}{\Delta \omega}$ $\omega = \omega + \Delta \omega$

 \triangleright The above method is Approximation method Another method of finding out $V_g\sin(\omega_s t)$ is:

$$
F'_{R(peak)} + F''_{R(peak)} = \frac{V_g \omega_c}{\left(\omega_s^2 + \omega_c^2\right)} \left(\omega_c + \omega_s\right) \otimes F'_{R(peak)} - F''_{R(peak)} = \frac{V_g \omega_c}{\left(\omega_s^2 + \omega_c^2\right)} \left(\omega_c - \omega_s\right)
$$

$$
\frac{\left(F'_{R(peak)} + F''_{R(peak)}\right) \left(F'_{R(peak)} - F''_{R(peak)}\right)}{F'_{R(peak)}} = \frac{\frac{V_g^2 \omega_c^2}{\left(\omega_s^2 + \omega_c^2\right)^2} \left(\omega_c^2 - \omega_s^2\right)}{\frac{V_g \omega_c^2}{\left(\omega_s^2 + \omega_c^2\right)}} = V_g \frac{\left(\omega_c^2 - \omega_s^2\right)}{\left(\omega_s^2 + \omega_c^2\right)} = V_g \sin \psi
$$

$$
\frac{\left(F'_{R(peak)} + F''_{R(peak)}\right) \left(F'_{R(peak)} - F''_{R(peak)}\right)}{\left(\omega_s^2 + \omega_c^2\right)}
$$

55 of 63

Mitigating the effect of grid frequency variation (contd.) $V_R = V_g \sin(\omega_S t)$ **▶ Substituting** $V_{\text{q}}\text{cos}\psi = 2F''_{\text{R(peak)}}$ \checkmark $\sin \left(\omega_s t + \psi\right) V_g \cos \psi - \cos\left(\omega_s t + \psi\right) V_g \sin \psi = V_g \sin \omega_s t \int_0^t R[\text{peak}] \sin \left(\omega_c^2 + \omega_s^2\right)$ \triangleright Rewriting the relation $(t) = \frac{v_g \omega_C \omega_S}{(\omega_S^2 + \omega_C^2)} \sin (\omega_S t + \psi)$ $\omega_{\rm c}$ + $\omega_{\rm i}$ $\omega_{c}\omega$ $\boldsymbol{+}$ ┿ ═ $f(t) = \frac{V_g \omega_c \omega_s}{t} \sin(\omega_s t)$ *V* $F_R(t) = \frac{s}{2}$ $\frac{c}{2}$ $\frac{s}{2}$ $\sin(\omega_s)$ S \mathcal{C} g^{ω} C^{ω} S $\sum_{R}^{r} (t) = \frac{s}{2} \frac{c}{2} \sin \frac{\sin \theta}{2}$ $(t) = -\frac{v_g \omega_C}{(\omega_s^2 + \omega_c^2)} \cos(\omega_s t + \psi)$ ω $\boldsymbol{+}$ $\boldsymbol{+}$ $=$ $$ $f(t) = -\frac{V_g \omega_c}{t} cos(\omega_c t)$ *V* $F_R(t) = -\frac{s}{2} + \frac{s}{2}$ $\cos(\omega_s)$ S ω_C $g^{\boldsymbol{\omega}} c$ *R* cos ² ² 2 (\textit{peak}) $\overline{(\omega_c^2 + \omega_s^2)}$ J \setminus $\overline{}$ L $=\frac{1}{(\omega_0^2 + \omega_0^2)}$ '' $c \sim s$ $V_{g} \omega_{c} \omega_{s}$ *R peak F* ω_{0} + ω . $-\cos(\omega_s t + \psi)V_g \cos \psi - \sin(\omega_s t + \psi)V_g \sin \psi = -V_g \cos \omega_s t \left[F''_{R (peak)} - \frac{V_g \omega_c \omega_s}{(\omega_s^2 + \omega_s^2)} \right]$ $(\omega_c^2 + \omega_s^2)$ $=\frac{6}{(\omega_0 2 + \omega_2)^2}$ $V_g \omega_c^2$ $c \sim s$ $V_{\overline{g}}\omega_{\overline{c}}$ *R peak F* ω_{0} + ω_{0} ω . $\left(\omega_{\mathcal{S}}t+\psi\right)$ ו L L $U_1 = 2F_R$ ["](*t*) + $2F_R$ ['](*t*) + $2\left[F_R^{\prime\prime}(peak) \cos(\omega_s t + \psi_s)\right]$ $\big(t\big)$ $\left(F_{R(\it peak)}^{\prime^2} - F_{R(\it peak)}^{\prime\prime}^2\right)^2$ $\omega_{S}t = 2F''_{R}(t) - \left\{\frac{(R_{\text{P}}-R_{\text{P}})}{F'}\right\} \cos(\omega_{S}t+\psi)$ \int I $\big\}$ $\bigg)$ l I ┤ \int 1 $\frac{1}{2}$ $\frac{2}{\sqrt{2}}$ $\frac{1}{2}$ $\frac{1}{2}$ $= V$ sin $\omega_c t = 2F_n''(t) - \frac{\sqrt{K(pear)} - K(pear)}{\sqrt{K(pear)}}$ $\cos(\omega_c t)$ *F* $F'_{\rm pc}$ \sim $-F$ $U_1 = V_g \sin \omega_s t = 2F_R''(t) - \frac{\sqrt{K(pear)}}{E}$ *R peak R peak R peak* $\frac{g}{g}$ sin $\omega_{S}t = 2F_{R}''(t) - \left\{\frac{\sqrt{K(\text{peak})}}{F}\right\}$ \cos (peak) 2 (peak) 2 (peak) 1 $(\omega_{\mathcal{S}}t+\psi)$ $\left(F_{R(\it peak)}^{\prime^2} - F_{R(\it peak)}^{\prime\prime}^2\right)^2$ $\omega_{S}t=-2F''_{R(\ peak)}\cos(\omega_{S}t+\psi)-\left\{\frac{(1/R(\ peak)-1/R(\ peak)-1}{\epsilon\epsilon}\right\}\sin(\omega_{S}t+\psi)$ $\begin{array}{c} \end{array}$ I $\left\{ \right\}$ $\big)$ $\overline{}$ I ┤ \int 1 $\frac{1}{2}$ $\frac{2}{\sqrt{2}}$ $\frac{1}{2}$ $\frac{1}{2}$ $=-V_{\perp}\cos\omega_{\rm s}t=-2F''_{\rm p(\rm c, c, d)}\cos(\omega_{\rm s}t+\nu)$ $-\langle\frac{\nabla R(\rm p\acute{e}a\rm k)}{R(\rm p\acute{e}a\rm k)}\rangle\sin(\omega_{\rm s}t)$ *F* $F'_{\rm BC}$ \sim \sim $-F$ $U_2 = -V_g \cos \omega_s t = -2F''_{R(\text{peak})} \cos(\omega_s t + \psi) - \frac{\sqrt{K(\text{peak})}}{F} \sin(\omega_s)$ *R peak* R *Peak* \blacksquare *R R peak* \mathcal{F}_g $\cos \omega_s t = -2F''_{R(\text{peak})} \cos(\omega_s t + \psi) - \left\{ \frac{\sqrt{R(\text{peak})}}{F} \right\} \sin \psi$ (peak) 2 (peak) 2 (peak) $2 - r_g \cos \omega_S t - 2r_R(\text{peak})$ (peak) 2 (peak) 2 $\sin w = \frac{R(\text{peak})}{R(\text{peak})}$ *^R pea^k ^F* $F'_{R (peak)}^2-F''_{R (peak)}$ *g* V_o sin $\psi = \frac{(N_f \cos \theta)}{E}$ $\frac{1}{2}$ $\frac{2}{\pi}$ $=\frac{(K(\text{peak})K(\text{peak}))}{K(\text{peak})}$ I \backslash \mathbf{r} L l ſ ψ $U_2 = 2F_R^{'''}(t) - 2\{F_{R(peak)}''\cos(\omega_s t + \psi)\} - 2\{F_{R(peak)}' \sin(\omega_s t + \psi)\}$ 56 of 63

 \triangleright Phase error with variation in grid frequency Mitigating the effect of grid frequency variation (contd.)

 \triangleright Phase shift, (ψ - θ) = 0⁰ for any grid frequency

 \rightarrow 1ph with comp (rigorous)

F1 (t) = -cos(^S t+) F2 (t) = sin(^S t+) ZCD ZCD S&H S&H ABS Trigger **X / Y X Y X Y** Trigger ABS **X / Y** U1 (t) U2 (t) cos sin *t F F F U V t F t S R peak R peak R peak g S R* sin 2 cos () 2 () 2 () 1 *t F F F U V t F t S R peak R peak R peak g S R peak S* cos 2 cos sin () 2 () 2 () 2 () 58 of 63

Mitigating the effect of grid frequency variation (contd.)

Fest results

Grid frequency (simulated using function generator) is varied at $t=t1$ from 50Hz to 45Hz

Grid voltage and unit vector without compensation for grid frequency variation

Grid voltage and unit vector with compensation for grid frequency variation

Mitigating the effect of grid frequency variation (contd.)

\triangleright Test results

Steady state waveform at 25Hz and 75Hz with approximation method

Mitigating the effect of grid frequency variation (contd.)

Fest results

Step change of frequency from 25Hz and 75Hz as well as from 75Hz to 25Hz

Grid voltage and unit vector without compensation for grid frequency variation

Grid voltage and unit vector with compensation for grid frequency variation

Conclusions

- \triangleright Single grid voltage is considered for the construction of unit vector
	- Two unity magnitude fundamental sinusoidal quantities, which are displaced by 90⁰ from each other
	- \triangleright One of the unit vector is in phase with grid voltage irrespective of the grid frequency variation

Thank you