

Integration of Renewable Energy Power Stations with Remote Monitoring and Control system for Smart Grid Applications

Senior Engineer and Theorem Joint Director

Jiju K. Aby Joseph

Power Electronics Group Centre for Development of Advanced Computing Thiruvananthapuram – India

Agenda

- What, Why, How Power Electronics?
- What is Smart Grid?
- Grid Interactive Renewable Energy Source Power Conditioning

Unit

• Importance of Remote Monitoring and Control of Power Stations

What?

Solid-state electronics for the control and conversion of electric power

Why?

To use power efficiently you need power electronics

How?

- \triangleright Applications of PE
- **Power Generation**
- \triangleright Power Transmission
- \triangleright Power Distribution

स्वी डेक CDAC

PE System

PE System

 \Box AC –DC Converters (Rectifiers)

DC- AC Converters (Inverters)

DC –DC Converters (Choppers)

AC –AC Converters (Cyclo Converters)

DAC Regulators

Some facts

Spectrum

OSide View is called Spectrum

Frequency

Information is coded Inside the Frequency

Need to extract the required frequency

All systems are doing filtering

DC - DC

स्त्री **डेक** CDAC

Voltage Divider

???

स्त्री डेक CDAC

???

???

DC-DC

Inductor

Inductor

Solution

SW1 OFF and SW2 ON

Switch ????

CDAC-Thiruvananthapuram CDAC- All Rights Reserved

Boost ???

SWITCH

www.cdac.in

E **=**P SPST

www.cda

Ideal Switch

- Ron =0, Roff = ∞
- \Box When ON Should withstand up to Infinite current and Von = 0
- \Box When OFF Should pass zero current and withstand up to Infinite Voltages
- \Box Zero delay on switching ; ie Ton = 0 ; Toff = 0;
- \Box No losses
- \Box ON OFF is Fully controllable
- \Box No Power to drive the Switch

There is no Such Switch in Practices

Drift and Diffusion In Semi Conductors

 \Box Motion of Carriers Under the influence of an electric filed

Motion of carriers from Higher concentration to lower Concentration

Power Diode

 \Box Conductivity Modulation

 \square Drift Region

 \Box Present in almost all Power Semiconductor Devices

Types Power Diode

General purpose

\Box Fast Recovery

\Box Schottky

DC-AC

CDAC-Thiruvananthapuram CDAC- All Rights Reserved

PWM

 $K =$ Voltage Modulation Index, $K < 1$ Lowest other than fundamental $2p - 1$ Harmonics $p = m/2$ m = fc/f Freq : modulation ratio

Topology

4 Level Inverter

Topology

 $V1 = V3 = Vdc$ & $V2 = V4 =0$

3 Level Inverter

Realization

How is Power electronics distinct from linear electronics?

How is Power electronics distinct from linear electronics?

How is Power electronics distinct from linear electronics?

Overview of PE Devices

Typical Power Electronic Converter

Power Converter Topologies

What, Why, How Power Electronics?

DC-DC Converters

Non-Isolated

DC-DC Converters Isolated

DC-AC Converters(Inverter)

AC-DC Converters(Rectifier)

What, Why, How Power Electronics?

PWM SCHEME

Applications of Power Electronics Circuits

DC-DC

DC Voltage Regulators, DC Power supply, Battery Charger, SMPS, DC Drives

DC-AC

Solar Inverters, Fuel Cell Inverter, AC Drives

AC-DC

SMPS, DC Power supply, Battery Charger, DC Drives

AC-AC

Wind Electric Generators, AC Drives

What is Smart Grid?

Smart Grid

An electricity supply network that uses digital communications technology to detect

Potential Application Areas

- **Electricity Distribution**
- Electricity Markets
- Renewable Energy
- Energy Storage
- **Transport**
- Industrial Energy Efficiency
- Building Energy **Efficiency**

India's Electricity Needs

DEMAND – **210000** Mega-Watt(appx.)

(Central Energy Authority(CEA)– Ministry of Power)

PRODUCTION **–182,200** Mega-Watt(MW)

INSTALLED CAPACITY –**225,133** Mega-Watt(MW)

(Central Energy Authority(CEA)– Ministry of Power)

DEFICIT – **10.2%**

Smart Grid Components

- Smart Meter
- Phasor Measurement
- Communication devices/ Information transfer
- Distributed generation

• An electrical meter that records consumption of electric energy in intervals

- Essential technical features and cost
- Bi-directional communication
- Demand Side Management

Why Smart Meter?

- Next generation of electricity metering
- Provide greater choice in energy tariffs and services
- Real-time information

Phasor Measurement

- \triangleright A device with unique ability to sample analog voltage and current waveforms in synchronism with a global reference signal(eg:GPS) and compute its phasor values and frequency information
- \triangleright Communicates the time-stamped computed information to PDC/SCADA etc. in near real-time
	- *1 st prototype of PMU – 1988 (Virginia Tech)*
	- *1 st PMU – 1992 (Macrodyne)*

Communication devices/ Information transfer

- Communication modules in smart grid
- Communication protocols and standards
- Wired Communication method (Ethernet, PLCC etc.)
- Wireless Communication methods (GSM, GPRS, Wi-Fi, RF etc.)

CDAC-Thiruvananthapuram CDAC- All Rights Reserved

Distributed generation

- Distributed generators and loads in the neighborhood can form micro grids which can work parallel to grid or operate in islanded mode providing UPS services
- The Microgrid can be assumed as a cluster of loads and micro sources operating as a single controllable system that provides power to its local area

Advantages

- Standby / Backup power to improve the availability and reliability of electric power
- Peak load shaving
- Sales of power back to utilities or other users
- Free energy input, zero operational costs (except diesel gensets), minimal maintenance
- Power quality, such as reactive power compensation and voltage support
- Reduction in environmental pollution
- Reduction of distribution losses in the grid.

How Smart Grid?

Smart Grid

- Analyze energy demand and supply
- Manage load according to supply
- Power outage and power quality monitoring
- Centralized data management system
- Remote monitoring and control of loads
- Bidirectional communication

Why Smart Grid?

- Improve efficiency of grid
- Reduce green house gases
- Automated control of distribution
- Provide infrastructure for electricity business
- Support micro generators
- Self healing

Grid Interactive Solar Photo-Voltaic (GISPV) Power Plant

GISPV -OVERVIEW

- \triangleright System Architecture
- \triangleright SPV array sizing & specifications
- \triangleright Photographs

POWER HARDWARE

- \triangleright Power conditioning Unit Single Line diagram
- \triangleright Topology Comparisons
- \triangleright Practical Hardware Scheme
- \triangleright Basic Interface Module (BIM)
- \triangleright Photographs (BIM, Hardware Panel)
- \triangleright Thermal management, DC/AC Filters
- \triangleright Specifications

CONTROL HARDWARE

- \triangleright Digital Controller requirements
- \triangleright Block diagram controller card

CONTROL ALGORITHM ÷

- Multi phase Interleaved DC-DC Converter, MPPT control
- \triangleright Grid side Controller
- \triangleright Experimental Results

GISPV - scheme

GISPV

www.cdac.in

System Architecture – GISPV Power Plant (25kWp)

Energy efficiency-the solution

Energy Challenge in India

Important terminologies

I-V and P-V Characteristics

Current source \vert **Voltage source** $\mathbf{I}_\text{g},\mathbf{P}_\text{g}$ PV Current vs. $\mathbf{1}$ PV Voltage 0.9 Maximum Power Point < 0.8 PV Current & Power (p.u) 0.7 0.6 0.5 0.4 0.3 ${\rm PV}$ Power vs. ${\rm PV}$ Voltage 0.2 0.1 0.1 0.2 0.3 0.4 $0.5\,$ $0.6\,$ 0.7 $_{\rm 0.8}$ $0.9\,$ $^{\rm 1}$ Vg 0 PV Voltage (p.u)

MPP

Effects of Parasitic resistances

Specifications of Solar PV Module

ABSOLUTE MAXIMUM RATINGS

-40 $^{\circ}$ C to +85 $^{\circ}$ C OPERATING TEMPERATURE

GENERAL

ANODISED ALUMINIUM

CDAC-Thiruvananthapuram CDAC- All Rights Reserved

Specifications of PCU

SPV Power Plant – Photographs

- GISPV -OVERVIEW ÷
	- \triangleright System Architecture
	- \triangleright SPV array sizing & specifications
	- \triangleright Photographs

POWER HARDWARE ÷

- **Power conditioning Unit - Single Line diagram**
- **Topology Comparisons**
- **Practical Hardware Scheme**
- **Basic Interface Module (BIM)**
- **Photographs (BIM)**
- **Thermal management, DC/AC Filters**
- **Specifications**

CONTROL HARDWARE

- \triangleright Digital Controller requirements
- \triangleright Block diagram controller card

CONTROL ALGORITHM ÷

- Multi phase Interleaved DC-DC Converter, MPPT control
- \triangleright Grid side Controller
- \triangleright Experimental Results

Single line diagram of PCU

Inverter Configurations available

Topology 1 – with Split DC Link capacitors

Topology 2 – with Four leg inverter

Topology 3 – with Three leg inverter + coupling transformer

Drawbacks

- **DC Bus voltage equalization**
- **Zero sequence current handling**
- **Control complexities**
- **No Isolation**

Drawbacks

- **Higher semiconductor cost**
- **Control complexities**
- **No isolation**

Advantages

- **Low voltage power electronics module**
- **Limits inrush currents**
- **Limits DC injection current**
- **Leakage inductance acts as filter inductor**
- **Local expertise available**

Detailed Hardware schematic diagram

Basic Interface Module (BIM)

Specification

BIM - Photographs

Multiphase Interleaved Boost converter

www.cdac.in

DC choke Selection Criteria

CASE 1

CASE 2

Fix $L = 2.5$ mH

Without interleaved carriers,

Total Ripple for 3 phase DC-DC converters = $\Delta I_i = 11A$

With interleaved carriers,

Total Ripple for 3 phase DC-DC converters = $\Delta I_i = 6A$

AC filter Selection Criteria

CASE 1

$$
\mathbf{f}_{\rm c} = \sqrt{f_{\rm sw} f_{\rm s}}
$$

$$
\mathbf{f}_{\rm c} = 707 \, \text{Hz}
$$

CASE 2

CDAC-Thiruvananthapuram CDAC- All Rights Reserved

- GISPV -OVERVIEW ÷
	- \triangleright System Architecture
	- \triangleright SPV array sizing & specifications
	- \triangleright Photographs
- POWER HARDWARE ÷
	- \triangleright Power conditioning Unit Single Line diagram
	- \triangleright Topology Comparisons
	- \triangleright Practical Hardware Scheme
	- \triangleright Basic Interface Module (BIM)
	- \triangleright Photographs (BIM)
	- \triangleright Thermal management, DC/AC Filters
	- \triangleright Specifications

CONTROL HARDWARE

- **Digital Controller requirements**
- **Block diagram – controller card**

CONTROL ALGORITHM

- Multi phase Interleaved DC-DC Converter, MPPT control
- \triangleright Grid side Controller
- \triangleright Experimental Results

Functional Requirements of Digital controller

DSPs

- \triangleright Reads various voltage, current signals
- \triangleright Source-side converter control with maximum power point tracking in the case of solar and wind power conversion
- \triangleright Battery management
- \triangleright Communication of critical parameters to/from the central Controller for coordinated operation
- \triangleright Converter / System level protections
- \triangleright Supervisory Control
- \triangleright Remote monitoring and control

FPGA

- \triangleright Shifted carrier generation for both source side and Grid side converters
- Generation of PWM Signals(36 Nos)

Digital controller Block diagram

Digital controller - Photograph

Auxiliary circuits- Photograph

PWM Interface Circuit SMPS for the Digital Controller

Power supply

Gate Driver Interface PCB

- GISPV -OVERVIEW ÷
	- \triangleright System Architecture
	- \triangleright SPV array sizing & specifications
	- \triangleright Photographs
- POWER HARDWARE ÷
	- \triangleright Power conditioning Unit Single Line diagram
	- \triangleright Topology Comparisons
	- \triangleright Practical Hardware Scheme
	- \triangleright Basic Interface Module (BIM)
	- \triangleright Photographs (BIM)
	- \triangleright Thermal management, DC/AC Filters
	- \triangleright Specifications
- CONTROL HARDWARE ÷.
	- \triangleright Digital Controller requirements
	- \triangleright Block diagram controller card
- CONTROL ALGORITHM ÷
	- Multi phase Interleaved DC-DC Converter, MPPT control
	- Grid side Controller
	- \triangleright Experimental Results

Solar PV System(Boost mode)

MPPT- Principle of operation

Conventional MPPT Techniques

- Perturb & Observe(P&O)/Hill climbing Method
- \triangleright Incremental Conductance(IC) Method
- Constant Voltage Method(CV) Method

Advanced MPPT Techniques

- \triangleright Artificial Intelligence techniques (Fuzzy logic, Neural networks, genetic algorithms)
- \triangleright Multi-dimensional MPPT /Particle swarm Optimization (PSO) Method

MPPT-Perturb & Observe method

Advantages

- \triangleright Simple structure & easy to implement
- \triangleright Generally used for wide range of applications

www.cdac.in

Voltage Controller

 $e[n] = V_{ref}[n] - V_{pv}[n]$

Voltage Control Law

$$
I_c[n] = I_c[n-1] + k_1 e[n] + k_2 e[n-1]
$$

Current Controller

Current Control Law

$$
d_{[n+1]} = \frac{L}{V_{dc}[n-1]T_s} (I_c[n] - I_L[n-1]) + 1 - \frac{V_{pv}[n-1]}{V_{dc}[n-1]}
$$

Phase shifted carrier generation

PWM wave form generation

Test Waveforms for DC-DC Converter

Test condition Vdcin: 340 V Pin: 3049.5 W $\text{lin}: 9.5 \text{ A}$ Vdclink: 400 V

Grid side Controller – Control Law

Controller Implementation Block Diagram

- Input Over current protection
- **≻DC bus protection**
- Grid over current protection
- Grid over / under voltage protection
- Anti-islanding during grid failures(IEEE 929:2000)
- Over temperature protection

Important Standards

Test Results

GISPV

Delivers about 70 units per day on sunny days

Inverter current Ү side

Photographs – installed at Technopark, Trivandrum

Photographs – installed at NEHU

Photographs – installed at WBREDA

www.cdac.in

Development of 1MW grid connected PV power plant at Jamuria, a 2MW power plant which is the first MW level power plant in India (August 2009)

Specifications of MW Power Plant

Photographs - 2 MW Power Plant

- Mode transition control strategies
- Single chip solution(FPGA)
- Improve power density
- Standardization & Commercialization
- Advanced communication infrastructure

Remote Monitoring and Control of Renewable Energy Source Power Plants

The major objectives of the development:

Development of reliable and cost effective solution for remote monitoring and control of Renewable Energy Source Power Conditioning Units

- Remote monitoring is an essential feature of Distributed Power Generating Station
- Tablet replaces Graphical LCD, Matrix keypad and wireless internet modem
- Cheap and easily upgradable

Remote Monitoring and Control of Renewable Energy Source Power Plants

Remote Monitoring and Control of Renewable Energy Source Power Plants

- \triangleright Demands an android tablet running Android OS 3.1 or latter having
	- \checkmark Bluetooth interface
	- Internet connectivity
- \triangleright DSP-FPGA based controller card in the PCU with having UART interface
- \triangleright Communication between Tablet and PCU through Bluetooth PCB
- \triangleright On-line monitoring of System parameters
- \triangleright Same android tablet can be used as local HMI better graphical visibility to an operator

Software Environment

- \triangleright Android application development :- Free downloadable Android Development Tool (ADT)
- \triangleright Eclipse based IDE
- \triangleright Java is used for application development
- \triangleright Code development in PCU Embedded C
- \triangleright Server posting method is used for web-enabling the system
- \triangleright Communication between android tablet and web server is by PHP file in the web server
- \triangleright Javascript and html coding used for web updation

Technical Features

Android Tablet

- Decipher PCU parameters
- Act as local UI as well as wireless modem
- Furnish Bluetooth, USB, SD card and wireless networking
- Can be used as a local storage infrastructure for logging of important events and data for post analysis

Webserver

- Store online UI
- Offer duplex communication with PCU and remote monitoring & control device
- Log measured parameter and system status with time

Technical Features

User Interface Controller Board

- Inbuilt communication interface such as UART, USB and Bluetooth
- Facilitates Bi- directional data exchange between PCU and Tablet

EXA Remote Monitoring & Control Device

• Networked PC, Laptop or Mobile phone

"Authorized user can remotely switch ON/OFF the system"

User Interface Screen

Local UI in Android Tablet Remote UI as a Web page (www.greenpowerlab.in)

Comparison between conventional & Proposed solutions for Remote monitoring and control

Comparison between conventional & Proposed solutions for local HMI

* For the conventional system, the total cost is evaluated as `25,200(Approx.) whereas the proposed android based monitoring system is only `7,300(Approx.).

Scope of the Work

- \triangleright Grid integration of large RES power plants can be triggered by on-line monitoring & control of RES PCUs
- \triangleright As higher capacity RES plants are being installed, complete shut down of RES power plants in case of grid failure can be avoided
- \triangleright Can be integrated as a part of Wide Area Monitoring in Smart Grid technology

Photo of Installed system

