

Integration of Renewable Energy Power Stations with Remote Monitoring and Control system for Smart Grid Applications

Jiju K.

Senior Engineer

Aby Joseph

Joint Director

Power Electronics Group Centre for Development of Advanced Computing Thiruvananthapuram – India

Agenda

- What, Why, How Power Electronics?
- What is Smart Grid?
- Grid Interactive Renewable Energy Source Power Conditioning

Unit

• Importance of Remote Monitoring and Control of Power Stations

What?

Solid-state electronics for the control and conversion of electric power

Why?

To use power efficiently you need power electronics

How?

- Applications of PE
- Power Generation
- Power Transmission
- Power Distribution

PE System

PE System

□ AC – DC Converters (Rectifiers)

DC- AC Converters (Inverters)

□DC –DC Converters (Choppers)

□AC –AC Converters (Cyclo Converters)

AC Regulators

Some facts

CDAC-Thiruvananthapuram

Spectrum

□Side View is called Spectrum

Frequency

□*Information is coded Inside the Frequency*

□Need to extract the required frequency

□All systems are doing filtering

DC - DC

सी **डैक** ©**DAC**

Voltage Divider

???

सी डैक CDAC

???

???

222

DC-DC

सी **डैक** C**DAC**

Inductor

Inductor

Solution

SW1 OFF and SW2 ON

Switch ????

CDAC-Thiruvananthapuram

Boost ???

SWITCH

www.cda

Ideal Switch

- □ Ron =0 , Roff = ∞
- □ When ON Should withstand up to Infinite current and Von = 0
- □ When OFF Should pass zero current and withstand up to Infinite Voltages
- \Box Zero delay on switching ; ie Ton = 0 ; Toff = 0;
- No losses
- □ ON OFF is Fully controllable
 - **No Power to drive the Switch**

There is no Such Switch in Practices

Drift and Diffusion In Semi Conductors

Motion of Carriers Under the influence of an electric filed

□ Motion of carriers from Higher concentration to lower Concentration

Power Diode

Conductivity Modulation

Drift Region

Present in almost all Power Semiconductor Devices

Types Power Diode

General purpose

□ Fast Recovery

□ Schottky

DC-AC

PWM

K = Voltage Modulation Index , K<1Lowest other than fundamental 2p – 1 Harmonics p= m/2 m = fc/f Freq :modulation ratio

Topology

S1 Connected to	S2 Connected to	O/P Voltage
V1	V4	V1-V4
V1	V3	V1 - V3
V2	V4	V2 – V4
V2	V3	V2 –V3

4 Level Inverter

Topology

V1 = V3 = Vdc & V2 = V4 =0

S1 Connected to	S2 Connected to	O/P Voltage
Vdc	0	Vdc
Vdc	Vdc	0
0	0	0
0	Vdc	-Vdc

3 Level Inverter

Realization

How is Power electronics distinct from linear electronics?

How is Power electronics distinct from linear electronics?

Linear operation	Switching operation
Active zone selected: Good linearity between input/output	Active zone avoided : High losses, encountered only during transients
Saturation & cut-off zones avoided: poor linearity	Saturation & cut-off (negative bias) zones selected: low losses
Transistor biased to operate around quiescent point	No concept of quiescent point
Common emitter, Common collector, common base modes	Transistor driven directly at base - emitter and load either on collector or emitter
Output transistor barely protected	Switching-Aid-Network (SAN) and other protection to main transistor
Utilization of transistor rating of secondary importance	Utilization of transistor rating optimized

How is Power electronics distinct from linear electronics?

Overview of PE Devices

Device	Symbol	Structure
Power Diodes	Anode Cathode	p (N _{ak}) n ⁻ (N _{ab}) n ⁻ (N _{ab}) K (c) Anode Epitaxial layer (Diff region) Cathode metalization
Silicon Controlled Rectifier (SCR)	Gate Cathode	Anode P J1 J2 Gate P J3 Cathode
Power MOSFET		Gate Gate P ⁺ N ⁺ P ⁺ N ⁺ Channel Drain
Insulated Gate Bipolar Transistor (IGBT)	G	<i>Emitter</i> <i>P</i> + <i>N</i> + <i>Epitaxial</i> <i>drift region</i> <i>N</i> - <i>P</i> + <i>Collector</i>

Typical Power Electronic Converter

Power Converter Topologies

Conversion FROM/TO	Name	Function	Symbol
DC to DC	Chopper	Constant to variable DC or variable to constant DC	
DC to AC	Inverter	DC to AC of desired voltage and frequency	
AC to DC	Rectifier	AC to unipolar (DC) current	\sim
AC to AC	Cycloconverter, AC-PAC, Matrix converter	AC of desired frequency and/or magnitude from generally line AC	

What, Why, How Power Electronics?

DC-DC Converters

Non-Isolated

DC-DC Converters Isolated

Forward $V_{\rm out} = D \cdot \frac{N_{\rm S}}{N_{\rm P}} \cdot V_{\rm supply}$ $D_3 \Delta$ Switch S Power Levels (Typical):100W Push-pull L1 Vout - $V_{\text{out}} = D \cdot \frac{N_{\text{S}}}{N_{\text{P}}} \cdot V_{\text{supply}}.2$ Vout Power Levels (Typical):150W (L) D_1 Half bridge $\overline{\mathbf{m}}$ $V_{\text{out}} = D \cdot \frac{N_{\text{S}}}{N_{\text{P}}} \cdot V_{\text{supply}}.2$ $U_{\rm E}$ Power Levels (Typical):200W (L) Full bridge °, S₁ V°, S₂ Tr $V_{\text{out}} = D \cdot \frac{N_{\text{S}}}{N_{\text{P}}} \cdot V_{\text{supply}}.2$ $U_{\rm E}$ Power Levels (Typical): ~200W

CDAC- All Rights Reserved

DC-AC Converters(Inverter)

AC-DC Converters(Rectifier)

What, Why, How Power Electronics?

PWM SCHEME

Applications of Power Electronics Circuits

DC-DC

DC Voltage Regulators, DC Power supply, Battery Charger, SMPS, DC Drives

DC-AC

Solar Inverters, Fuel Cell Inverter, AC Drives

AC-DC

SMPS, DC Power supply, Battery Charger, DC Drives

AC-AC

Wind Electric Generators, AC Drives

WWW.cdac.in

What is Smart Grid?

An electricity supply network that uses digital communications technology to detect and react to local changes in usage (or simply Grid+Communication+Sensors).

Existing Grid	Smart Grid
Electromechanical	Digital
One-way communication	Two-way communication
Centralized generation	Distributed generation
Few sensors	Sensors throughout
Manual monitoring	Self monitoring
Manual restoration	Self healing
Failure and blackouts	Adaptive and islanding
Limited control	Pervasive control
Few customer choices	Many customer choices

Potential Application Areas

- Electricity Distribution
- Electricity Markets
- Renewable Energy
- Energy Storage
- Transport
- Industrial Energy Efficiency
- Building Energy Efficiency

India's Electricity Needs

DEMAND - 210000 Mega-Watt(appx.)

(Central Energy Authority(CEA)- Ministry of Power)

PRODUCTION - 182,200 Mega-Watt(MW)

INSTALLED CAPACITY - 225,133 Mega-Watt(MW)

(Central Energy Authority(CEA) – Ministry of Power)

DEFICIT - 10.2%

Smart Grid Components

- Smart Meter
- Phasor Measurement
- Communication devices/ Information transfer
- Distributed generation

Smart Meter

- An electrical meter that records consumption of electric energy in intervals
- Essential technical features and cost
- Bi-directional communication
- Demand Side Management

Why Smart Meter?

- Next generation of electricity metering
- Provide greater choice in energy tariffs and services
- Real-time information

Phasor Measurement

- A device with unique ability to sample analog voltage and current waveforms in synchronism with a global reference signal(eg:GPS) and compute its phasor values and frequency information
- Communicates the time-stamped computed information to PDC/SCADA etc. in near real-time
 - 1st prototype of PMU 1988 (Virginia Tech)
 - 1st PMU 1992 (Macrodyne)

Communication devices/ Information transfer

- Communication modules in smart grid
- Communication protocols and standards
- Wired Communication method (Ethernet, PLCC etc.)
- Wireless Communication methods (GSM, GPRS, Wi-Fi, RF etc.)

CDAC- All Rights Reserved

Distributed generation

- Distributed generators and loads in the neighborhood can form micro grids which can work parallel to grid or operate in islanded mode providing UPS services
- The Microgrid can be assumed as a cluster of loads and micro sources operating as a single controllable system that provides power to its local area

Advantages

- Standby / Backup power to improve the availability and reliability of electric power
- Peak load shaving
- Sales of power back to utilities or other users
- Free energy input, zero operational costs (except diesel gensets), minimal maintenance
- Power quality, such as reactive power compensation and voltage support
- Reduction in environmental pollution
- Reduction of distribution losses in the grid.

Thiruvananthanuram

- Analyze energy demand and supply
- Manage load according to supply
- Power outage and power quality monitoring
- Centralized data management system
- Remote monitoring and control of loads
- Bidirectional communication

Why Smart Grid?

- Improve efficiency of grid
- Reduce green house gases
- Automated control of distribution
- Provide infrastructure for electricity business
- Support micro generators
- Self healing

Grid Interactive Solar Photo-Voltaic (GISPV) Power Plant

GISPV -OVERVIEW

- System Architecture
- SPV array sizing & specifications
- Photographs

POWER HARDWARE

- Power conditioning Unit Single Line diagram
- Topology Comparisons
- Practical Hardware Scheme
- Basic Interface Module (BIM)
- Photographs (BIM, Hardware Panel)
- Thermal management, DC/AC Filters
- Specifications

CONTROL HARDWARE

- Digital Controller requirements
- Block diagram controller card

CONTROL ALGORITHM

- Multi phase Interleaved DC-DC Converter, MPPT control
- Grid side Controller
- Experimental Results

CDAC- All Rights Reserved

GISPV - scheme

GISPV

System Architecture – GISPV Power Plant (25kWp)

Energy efficiency-the solution

Energy Challenge in India

Important terminologies

I-V and P-V Characteristics

Current source Voltage source $I_{\text{g}},P_{\text{g}}$ PV Current vs. 1 PV Voltage 0.9 Maximum Power Point < 0.8 PV Current & Power (p.u) 0.7 0.6 0.5 0.4 0.3 PV Power vs. PV Voltage 0.2 0.1 0.7 0.1 0.2 0.3 0.4 0.5 0.6 0.8 0.9 $^{1} \mathrm{V_{g}}$ 0 PV Voltage (p.u)

MPP

Effects of Parasitic resistances

CDAC- All Rights Reserved

Specifications of Solar PV Module

ELECTRICAL CHARACTERISTICS	
RATED POWER	280 Wp
OPEN CIRCUIT VOLTAGE (Voc)	44.50 V
MAXIMUM POWER VOLTAGE (Vmp)	35.00 V
SHORT CIRCUIT CURRENT (Isc)	8.50 A
MAXIMUM POWER CURRENT (Imp)	8.00 A
MODULE EFFICIENCY (%)	14.17
OUTPUT TOLERANCE (%)	±3
CELLS	72
CELL LAYOUT	12x6
MAXIMUM SYSTEM VOLTAGE	1000 VDC

ELECTRICAL CONNECTION	
JUNCTION BOX	IP 65 / IP 67
OUTPUT TERMINAL	1000mm,4mm ² Cable;MC4 / HA3 Type / Compatible Connectors
PROTECTION	SCHOTTKY BYPASS DIODES

MECHANICAL	CHARACTERISTICS

MODULE DIMENSIONS (mm)	1988 x 994 x 46
WEIGHT (KG, APPROX)	28

ABSOLUTE MAXIMUM RATINGS

OPERATING TEMPERATURE

GENERAL

	~	-			-	1	
1	F	R	A	1	M	E	

ANODISED ALUMINIUM

-40°C to +85°C

TEMPERATURE CO-EFFICIENTS				
α _{lsc} %/°C	β _{voc} %/*C	YPmp %/⁺C		
+0.05	-0.34	-0.45		
NOCT	45±2℃			

CDAC-Thiruvananthapuram

CDAC- All Rights Reserved

Specifications of PCU

Peak Power of SPV array	25kWp
Nominal power	30 kW
Voc Solar PV Array	400.5 V
V _{MPP}	315 V
Grid Voltage	415 V ± 10% , 3¢ AC
Grid Frequency	50Hz ±0.5 %
Power factor	> 0.95
I _{THD}	< 5% at full load as stipulated by IEEE 1547-2003
Efficiency	97 %
Converter	IPM based voltage source inverter
User Interface	Android Tablet GUI, Remote data access through Internet
Protections	Over voltage, over current, temperature at source and load side, Anti islanding

SPV Power Plant – Photographs

- GISPV OVERVIEW
 - System Architecture
 - SPV array sizing & specifications
 - Photographs

POWER HARDWARE

- Power conditioning Unit Single Line diagram
- > Topology Comparisons
- Practical Hardware Scheme
- Basic Interface Module (BIM)
- Photographs (BIM)
- > Thermal management, DC/AC Filters
- > Specifications

CONTROL HARDWARE

- Digital Controller requirements
- Block diagram controller card

CONTROL ALGORITHM

- Multi phase Interleaved DC-DC Converter, MPPT control
- Grid side Controller
- Experimental Results

Single line diagram of PCU

Inverter Configurations available

Topology 1 – with Split DC Link capacitors

Topology 2 – with Four leg inverter

Topology 3 – with Three leg inverter + coupling transformer

Drawbacks

- DC Bus voltage equalization
- Zero sequence current handling
- Control complexities
- No Isolation

Drawbacks

- Higher semiconductor cost
- Control complexities
- No isolation

CDAC-Thiruvananthapuram

Advantages

- Low voltage power electronics module
- Limits inrush currents
- Limits DC injection current
- Leakage inductance acts as filter inductor
- Local expertise available

Detailed Hardware schematic diagram

CDAC- All Rights Reserved

Basic Interface Module (BIM)

Specification

Rated power	10 kVA
DC Bus voltage	400V Max
AC Voltage	200V I-n nominal,
	3 phase, 50 Hz
Switching	10 kHz
frequency	
Switching devices	IGBT/IPM
	600V,150A
	Mitsubhisi make
Protections	SC, DC O/V,
	Overload, over
	temp.
Cooling System	Forced air cooling

BIM - Photographs

CDAC- All Rights Reserved

Multiphase Interleaved Boost converter

DC choke Selection Criteria

CASE 1

CASE 2

Fix L = 2.5 mH

Without interleaved carriers,

Total Ripple for 3 phase DC-DC converters $=\Delta I_i = 11A$

With interleaved carriers,

Total Ripple for 3 phase DC-DC converters $=\Delta I_i = 6A$

AC filter Selection Criteria

CASE 1

$$f_{c} = \sqrt{f_{sw}f_{s}}$$
$$f_{c} = 707 \text{ Hz}$$

CASE 2

CDAC-Thiruvananthapuram

- GISPV OVERVIEW
 - System Architecture
 - SPV array sizing & specifications
 - Photographs
- ♣ POWER HARDWARE
 - Power conditioning Unit Single Line diagram
 - Topology Comparisons
 - Practical Hardware Scheme
 - Basic Interface Module (BIM)
 - Photographs (BIM)
 - > Thermal management, DC/AC Filters
 - Specifications

CONTROL HARDWARE

- Digital Controller requirements
- Block diagram controller card

CONTROL ALGORITHM

- Multi phase Interleaved DC-DC Converter, MPPT control
- Grid side Controller
- Experimental Results

Functional Requirements of Digital controller

DSPs

- Reads various voltage, current signals
- Source-side converter control with maximum power point tracking in the case of solar and wind power conversion
- Battery management
- Communication of critical parameters to/from the central Controller for coordinated operation
- Converter / System level protections
- Supervisory Control
- Remote monitoring and control

FPGA

- Shifted carrier generation for both source side and Grid side converters
- Generation of PWM Signals(36 Nos)

Digital controller Block diagram

WWW.Edgc.in

Digital controller - Photograph

Auxiliary circuits- Photograph

PWM Interface Circuit

Current sensor PCB

SMPS for the Digital Controller

Voltage sensor PCB

Power supply

Gate Driver Interface PCB

- GISPV OVERVIEW
 - System Architecture
 - SPV array sizing & specifications
 - Photographs
- ♣ POWER HARDWARE
 - Power conditioning Unit Single Line diagram
 - Topology Comparisons
 - Practical Hardware Scheme
 - Basic Interface Module (BIM)
 - Photographs (BIM)
 - > Thermal management, DC/AC Filters
 - Specifications
- CONTROL HARDWARE
 - Digital Controller requirements
 - Block diagram controller card
- CONTROL ALGORITHM
 - Multi phase Interleaved DC-DC Converter, MPPT control
 - Grid side Controller
 - Experimental Results

Solar PV System(Boost mode)

MPPT- Principle of operation

WWW.Edgc.in

Conventional MPPT Techniques

- Perturb & Observe(P&O)/Hill climbing Method
- Incremental Conductance(IC) Method
- Constant Voltage Method(CV) Method

Advanced MPPT Techniques

- Artificial Intelligence techniques(Fuzzy logic, Neural networks, genetic algorithms)
- Multi-dimensional MPPT /Particle swarm Optimization
 (PSO) Method

MPPT-Perturb & Observe method

Advantages

- Simple structure & easy to implement
- Generally used for wide range of applications

Voltage Controller

 $e[n] = V_{ref}[n] - V_{pv}[n]$

Voltage Control Law

$$I_{c}[n] = I_{c}[n-1] + k_{1}e[n] + k_{2}e[n-1]$$

Current Controller

Current Control Law

$$d_{[n+1]} = \frac{L}{V_{dc}[n-1]T_s} \left(I_c[n] - I_L[n-1] \right) + 1 - \frac{V_{pv}[n-1]}{V_{dc}[n-1]}$$

Phase shifted carrier generation

PWM wave form generation

Test Waveforms for DC-DC Converter

<u> Test condition</u>	
Vdcin: 290 V	
Vdclink : 400 V	
Pin: 9.78 kW	
Iin : 33.67 A	

Test condition Vdcin: 340 V Pin: 3049.5 W Iin : 9.5 A Vdclink : 400 V

CDAC-Thiruvananthapuram

Grid side Controller – Control Law

Controller Implementation Block Diagram

- >Input Over current protection
- ➤DC bus protection
- ➤Grid over current protection
- ➤Grid over / under voltage protection
- >Anti-islanding during grid failures(IEEE 929:2000)
- >Over temperature protection

Important Standards

List of PV Inverter Standards/Regulations	Reference No.
hotovoltaic systems – Power conditioners – Procedure for measuring efficiency	IEC 61683:1999
Semiconductor convertors - General requirements and line commutated convertors - Part 1-1: Specifications of basic requirements	IEC 60146-1-1:1991
Low Voltage Ride Thorugh(LVRT) Tests	IEC 61400-21
Balance-of-system components for photovoltaic systems – Design qualification natural environments	IEC 62093:2005
Test procedure of islanding prevention measures for utility-interconnected photovoltaic inverters	IEC 62116:2008 modified
Photovoltaic(PV Systems)-Characteristics of the utility interface	IEEE 1574 , IEC 61727(2004- 12)Ed.2.0
Electrical installations of buildings-Part 7: Requirements for special installations or locations-section 712:Photovoltaic power supply systems	IEC 60364-7-712
Photovoltaic system performance monitoring - Guidelines for measurement, data exchange and analysis	IEC 61724:1998
Overvoltage protection for photovoltaic (PV) power generating systems - Guide	IEC 61173:1992
Safety of power converters for use in photovoltaic power systems – Part 1: General requirements	IEC 62109-1:2010
Safety of power converters for use in photovoltaic power systems – Part 2: Particular requirements for inverters	IEC 62109-2:2011
Protection against lightning - Part 3: (Physical damage to structures and life hazard - Supplement 5: Lightning and overvoltage protection for photovoltaic power supply systems)	IEC 62305-3:2010- 12 Edition 2.0
Solar photovoltaic energy systems - Terms, definitions and symbols	IEC/TS 61836:2007
Grid connected photovoltaic systems - Minimum requirements for system documentation, commissioning tests and inspection	IEC 62446:2009

Test Results

GISPV

Delivers about 70 units per day on sunny days

Inverter current Y side

CDAC- All Rights Reserved

Photographs – installed at Technopark, Trivandrum

Photographs – installed at NEHU

Photographs – installed at WBREDA

Development of 1MW grid connected PV power plant at Jamuria, a 2MW power plant which is the first MW level power plant in India (August 2009)

Specifications of MW Power Plant

Specification of Solar PV array		
Rated Peak power per set	1250 kW x 2	
Array Tilt Angle	20 ⁰	
Bus Voltage	670 – 800 V	
Module Rating	240 / 225 W	
Specification of Power Conditioning Unit		
Nominal Power	1 MW (4* 250W)	
Grid Voltage	415 ± 10 %, 3 Φ	
Grid frequency	50 Hz ± 0.5 %	
Power factor	> 0.95 above 10% of installed capacity	
I _{THD}	< 5%, at full load as stipulated by IEEE 1547 – 2003	
Efficiency	97 %	
Converter	IGBT based voltage source Inverter	

Photographs - 2 MW Power Plant

- Mode transition control strategies
- Single chip solution(FPGA)
- Improve power density
- Standardization & Commercialization
- Advanced communication infrastructure

Remote Monitoring and Control of Renewable Energy Source Power Plants

The major objectives of the development:

Development of reliable and cost effective solution for remote monitoring and control of Renewable Energy Source Power Conditioning Units

- Remote monitoring is an essential feature of Distributed Power Generating Station
- Tablet replaces Graphical LCD, Matrix keypad and wireless internet modem
- Cheap and easily upgradable

Remote Monitoring and Control of Renewable Energy Source Power Plants

Remote Monitoring and Control of Renewable Energy Source Power Plants

- > Demands an android tablet running Android OS 3.1 or latter having
 - ✓ Bluetooth interface
 - Internet connectivity
- DSP-FPGA based controller card in the PCU with having UART interface
- Communication between Tablet and PCU through Bluetooth PCB
- On-line monitoring of System parameters
- Same android tablet can be used as local HMI better graphical visibility to an operator

Software Environment

- Android application development :- Free downloadable Android Development Tool (ADT)
- Eclipse based IDE
- Java is used for application development
- Code development in PCU Embedded C
- Server posting method is used for web-enabling the system
- Communication between android tablet and web server is by PHP file in the web server
- Javascript and html coding used for web updation

Technical Features

Android Tablet

- Decipher PCU parameters
- Act as local UI as well as wireless modem
- Furnish Bluetooth, USB, SD card and wireless networking
- Can be used as a local storage infrastructure for logging of important events and data for post analysis

> Webserver

- Store online UI
- Offer duplex communication with PCU and remote monitoring & control device
- Log measured parameter and system status with time

Technical Features

User Interface Controller Board

- Inbuilt communication interface such as UART, USB and Bluetooth
- Facilitates Bi- directional data exchange between PCU and Tablet

Remote Monitoring & Control Device

• Networked PC, Laptop or Mobile phone

"Authorized user can remotely switch ON/OFF the system"

Local UI in Android Tablet

Remote UI as a Web page (www.greenpowerlab.in)

Comparison between conventional & Proposed solutions for Remote monitoring and control

Parameters	Conventional Online Monitoring System	Proposed Android Tablet based Online monitoring System
Communication link between RES PCU and Ethernet	Can be achieved through Rabbit core processor (RCM3000) cost` 8,000	Serial to Bluetooth converter module(HC- 04/HC-05/HC-06) cost`600
Establishment of internet connection	Requires internet modem with public IP address approximate cost ` 6,000 per annum	The Existing webserver inbuilt with Public IP can be utilized thereby avoiding the use of internet modem
Other maintenance cost	Renewal of Public IP every year and each system need unique IP, so this cost will get multiplied while number of system increases	Since server posting method is used with unique login gateway /unique domain name, Cost won't change irrespective of number of system

Comparison between conventional & Proposed solutions for local HMI

Item Resources	Conventional	Proposed Android based system
	GLCD System	
	Graphical LCD 128x64	Cheap android tablet cost <u>~</u> ` 6,500
Display device	(CFAG320240CX-YMI-T)	
	cost <u>~</u> ` 6,200	
Keypad	16WAY Keypad(GS160201) cost	Utilizing tablet's touch pad
	<u>~</u> `5 ,000	

* For the conventional system, the total cost is evaluated as `25,200(Approx.) whereas the proposed android based monitoring system is only `7,300(Approx.).

Scope of the Work

- Grid integration of large RES power plants can be triggered by on-line monitoring & control of RES PCUs
- As higher capacity RES plants are being installed, complete shut down of RES power plants in case of grid failure can be avoided
- Can be integrated as a part of Wide Area Monitoring in Smart Grid technology

Photo of Installed system

